PUENC TR

ISSN # 0748

“THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

Issue Mumber 14 $2.50 US

Hardware Tricks ...

Controlling the Hayes Micromodem I
From Assembly Language ..

$-100 8 to 16 Bit Ram Conversion -

Time-Frequency Domain Analysis ..

BASE:

Part Two in a Series on
How to Design and Write Your Own Database o »

Interfacing Tips and Troubles:
Interfacing the Sinclair Computers, Part TWo vase

-

Tre Computer Journa 1

Editor’s Page

The Future is Bright in Some Microcomputer Markets

We spend so much time thinking about the companies
that are laying off their help or filing for Chapter 11 that we
lose sight of those that are doing well. This month we will
concentrate on the areas which we expect to grow and
prosper.

I feel very strongly that the next real growth in
microcomputers will be in managing the real world. This
includes, but is not limited to, robotics, measurement,
control, manufacturing, automotive, scientific research,
medical, household, hobby, and thousands of other
applications. The computer industry has been so busy
developing the business, home, and personal computer
markets that there has been relatively little work done on
the real world applications.

We already have microprocessors in watches(??77),
microwave ovens, cars, stereos, and factories, but the
expansion is being limited by a shortage of people with
technical knowledge and imagination who can conceive and
implement new applications. We need people experienced in
using microprocessors to make things happen instead of
using them to process data as in business programs. Until
now most of the work on computer controlied applications
has been done on mainframes, but now more of this work is
being done on micros and the impact of using micros for
controlling the real world will affect our life styles at least
as much as the use of micros in the home and office already
has.

The pioneers in this area (yes, there are still pioneers in
the micro industry) are largely individuals familiar with
hardware and software who are very curious about how
things work and who can foresee how microprocessors can
be made to perform a necessary function. We can’t supply
the curiosity —the need to know why—but we do intend to
supply the information required to figure out how to
accomplish the idea once it is formed. And perhaps we can
prod the curiosity a little by showing what others are doing
and presenting questions and challenging ideas.

One example of the type of applications people are
working on is the monitoring of the water level in a
standpipe or well. How do you determine the fluid level?
How do you store and safeguard the data in a remote area
with a hostile environment far from power or phone lines for
extended periods of time? How do you acquire the data and
reset the device without risking the loss of the data? All this
must be done on a limited budget, so solar powered satellite
microwave links are out.

The people working on projects like this are forced by
necessity to be both hardware and software hackers who
can work with a soldering iron as well as with a keyboard.
There are many people and organizations who can fine tune
and polish the device once a prototype has been built, but
there is a definite shortage of people who cdn see the need
and devise some way to accomplish it.

A person has to be proficient in many different skills to
develop projects in this field. Some of the areas which we
intend to cover are: understanding and using compilers,
assemblers, linkers, and loaders; choosing and using utility
libraries with standard languages; special languages such as
FORTH, LISP, SAVVY, etc; assembly language
programming; developing public domain subroutines and
programs for our area of interest; sensors for measuring
position, distance, force, temperature, pressure, etc.; using
PROMs, EPROMs, and EEPROMS; interfacing between the
micro and the real world; developing stand-alone
microprocessor controllers; and much more.

It is impossible to write at a level which will satisfy all of

our readers. What is way over the heads of some will be too
continued on page 5

Editor/Publisher.............. Art Carlson
Art Director.............. Joan Thompson
Art Assistant. Lots Cawrse
Production Assistant. Judie Overbeek
Technical Editor.............. Lance Rose
Contributing Editor........ Ernie Brooner

The Computer Journal® is published 12
times a year. Annual subscription ts §24 in
the U.S., $30 in Canada, and $48 airmail in
other countries.

Entire contents copyright © 1984 by The
Computer Journal

Postmaster: Send address changes to:
The Computer Journal P.O. Box 1697,
Kalispell, MT 59908-1697.

Address all editorial advertising and
subscription inquires to: The Computer
Journal, P.O. Box 1697, Kalispell MT
59908-1697.

2 The Computer Journa

HARDWARE TRICKS
by Bill Kibler

In the first article on “Tricks of the Trade” (Vol.II, No.
12), 1 explained how I do some of the programming for
- system integration, specifically, installing new 1/0 drivers in
~ & BIOS. Let's look now at how to handle the hardware
aspect of setting up a system. We'll start at the
beginning — with the power supply.

Power Supplies

No system can run without power, so let's look at some
concerns in the category of power supplies. For S-100
systems a large but non regulated supply is needed for the
bus supplies (the main supply is non-regulated because there
are regulators on each board). Three voltages of +8, +16,
and - 16 are used by the individual cards to get +5, +12
and -12. For any -5 volt needs the -12 will be used.
Current draw on the +8 can be excessive, but the others
will draw nominal amounts. For single board systems,
supply voltages are +5, + 12, and (sometimes) - 12. Single
board systems will need better regulated supplies than S-
100, but both will need fairly clean outputs.

Most new systems use switcher supplies for better
efficiency at a lower price. However, these physically
smaller units have one drawback—mainly their noise
" passing abilities. To understand this, one must understand
the two types of designs. The older “boat anchor” style of
design, which has been around for many years, uses a large
transformer to provide the desired voltages. A bridge
rectifier is used off of each winding of the transformer for
each voltage. Large amounts of capcitance, near one farad,
are used to smooth out the ripple. This large amount of
capacitance also removes noise, and provides a boost type of
reserve for line variations. Having used several systems
with this type of supply, I prefer them in environments
which are noisy or have poor AC sources.

The switcher is a rather new power supply design, using
cheaper and lighter components. The voltages are obtained
from an oscillator (switching frequency) generated signal
that is rectified to produce the desired voltage. The higher
the frequency of oscillation the lighter the transformers
become, and also the higher their efficiency. This is why
aircraft systems use 400hz instead of 60hz; it provides a
great reduction in size and weight, a real concern in aireraft,
not computers. In theory, the only difference is the source of
the supply—60 hz versus 400hz, but in actuality, there is
more. Some switcher supplies will put noise into disk drives
if not properly shielded. Noise spikes seem to pass through
switcher supplies much more readily (lower output
capacitance), and some supplies will not work properly if the
load varies too much from their designed specifications.

The choice of which type of supply to use is normally not

yours to make. Most manufacturers have gone to switchers
to save money and sell noise filters. When building your own
power supply, I would recommend using the older style
“boat anchors,” especially in noisy areas. Cost is not usually
a consideration as non-switcher parts are more readily
available than switcher parts. Also, it is generally easier to
over-design a boat anchor than it is to buy an over designed
switcher. Over-designing becomes more important as you
add extra boards or circuits. Extra amounts of power
(sometimes 100% extra), are needed to handle that initial
surge of computing or disk accessing. Some rather strange
problems have been traced to poor source supplies which
were unable to handle that extra surge. An example was a
disk supply with a marginal 24V supply. If stepped once it
would work fine, but when returning to track zero, it would
fail. When the supply was checked with a scope it showed
that the voltage dropped under demand to less than 18V.
Changing the design and using larger capcitors solved the
problem.

8] § 4

The newest scam is the UnInterruptible Power source
(UIP). These units are being sold to prevent loss of data
during a power failure. Although [have as yet to see a
power failure while computing, I suppose it does happen to
some people. My personal feeling is that unless you are
doing life threatening activities, proper backup procedures
will provide the needed protection. Taking a second to dwell
on what those procedures are, I would like to say that
anyone doing computing with orginal disks or unbacked-up
files deserves what can and will happen to them.

Loss of data is no laughing matter, and losing several
hours of work can be both costly and frustrating. As a
writer, I stop every 15 to 30 minutes and do a €CTRL K»
S with WORDSTAR, which saves my additions to the file
and gets me back to where I left off. This means that if
something should happen, I would not lose more than a few
minutes of work. However, this is still not foolproof, as a
power failure can destroy the disk. A second backup disk,
one which is unloaded from the machine when not
transferring data, is an absolute necessity. I know of one
case in which a power cord was accidentally kicked out. The
users’s backup disk was kept in the fourth drive with the
door closed. After rebooting with a new boot disk, it turned
out that all four disks had been damaged. Some disk doctor
type programs may save data from a damaged disk, but the
usual procedure is just to reformat and start over.

For those people who use boat anchor type supplies, there
is & way to protect yourself. It can take many machine
cycles for the supply voltages to drop to unusable levels in

supplies with rather large amount of capacitance. We are
not talking minutes but rather 1 to 10 sec or more {depends
on size of supply and number of circuits). This time is
actually enough to sense the power failure and save all of
memory to disk. The procedure would be to use a circuit
that forces a NON-MASKABLE interrupt should the line
voltage fail. This special interrupt routine then saves all
registers and memory banks to disk under a special file
name. After power is returned & second program is run to
reset the machine. I know of one such system and have
planned on doing that to my own system but as yet have not
had a reason to need it.

Should you determine that you actually need a UPI, you
will then be faced with the problem of what type to get.
Where I work we have several backup supplies, mainly to
provide power for emergency two-way radio systems. A
computer system that monitors.critical temperature alarms
has not only backup power but a second computer on line.
The last system is a number controlled machine which
requires a half hour or more to load the primary program
paper tapes. As in any business, these units are there
becuse time is money, big money, and the several thousand
extra dollars for the backup is usually less than five percent
of the overall price (quite often less than one percent). The
expense and size of the system is based on the design and
the components used. The big expense is in the very high
quality batteries, which are usually some form of GEL-CEL
type unit. These batteries will take nearly a hundred
complete discharges over about a two to three year period
before replacement is needed. The gelatin-like electrolytic
eliminates the need to replace any lost water or worry about
the acids eating away the wiring.

The electronics on a cheap unit can cause noise, or worse
yet, still glitch the system when the power fails. The better
units can be switched back and forth between the AC lines
and batteries without any deterioration of the AC quality.
What must be watched for is the type of output from the
supply —it should be near a true 80 cycle sine wave. The
cheap units will output square waves that can have too high
a duty cycle for some switcher power supplies. The design is
such that you charge the batteries from the line, and run an
inverter from the batteries. Those inverters and switch-over
relays are where the problems start. Should you really want
to understand the inner design aspects of UIPs, contact one
of the manufacturers of the bigger types (GOULD) as they
will sometimes have a tutorial type sales pitch that will
answer all your questions. Should you decide you must have
one, build it yourself as part of your power supply. By this I
mean design it so that the batteries are across the main
output caps lor in place of them) so that your regular boat
anchor is also the battery charger. Very small batteries will
do, as you should only need them to save to disk. The power
should then be turned off as quickly as possible (about 3 to 5
minutes), which is not what the advertisers show their
people doing.

Buses

In S-100 as in other products, a bus is used to

communicate between different cards or parts of the

The Computer Journa: 3

system. One subject which often leads to controversial
discussions is that of terminators. In the new IEEE
standard, terminators are generally specified. This is done
to insure that a signal will need to be pulled up by some
defined source. This is to say that the specified signal should
be pulled high only at a certain given location. Doing so at
other locations will produce multiple pullups and may hurt
the signal. Termination, however, also involves the use of
active voltages on most all signal paths to prevent ringing
and help reduce other forms of noise. It has been my
experience that using termination as a standard rule of
thumb is not a good practice.

One of the shortcomings of the S-100 system is the rather
arbitrary assignment of the signals. These assignments are
not always the best choices for minimizing noise. Because of
this, many systems have had considerable troubles, more
often those with large, 20 or more slotted buses. These long
signal paths have caused a lot of the headaches. Most good
buses now have ground paths between each line to help
solve the problem. The use of pullup and pulldown resistors
also improved some of the problems. While working on a
single board system at Micropro, I had a chance to see first
hand what termination could and could not do. The first
design had a considerable amount of ringing in the address
lines, and required both series and shunt resistors to bring
the noise to usable levels. The second design of the board,
with different length signal lines, required no resistors at
all. In my own work, I have a removable terminator board,
and will look at my signals with a scope and try the board.
In each test that I have made (and I have made many!) the
signals were far worse with the terminator than without it.

When designing a system, always check the signals with a
scope and be sure they need terminating or pullups or
pulldowns. When extending the address system to contain
more than 16 address lines, the use of pulldown resistors
will be necessary. Outputs tied to devices that can tristate
will need some form of resistor. This resistor will keep the
input of a device from floating above the on state. This on
state varies from device to device but is usually considered
to be about 0.8V. Another way of looking at the problem is
to consider that any signal between the range of 0.8 and
3.2V will take anybody's guess as to what state the device
will assume. A zero signal is 0V and a one is 4.0V —anything
else can cause problems. In reality, there is room for
variation but my point is to watch your signal lines; too
much variation from the normal will cause problems.

Hacking and Cutting

While talking about signals, I should refresh your
memories about the PDBIN problem with Z80 processors.
PDBIN should remain low until PSYNC goes low, which is
the 8080 norm. The Z80 system will not run if the memory
boards do their refresh during this time. To correct this I
usually AND the two signals so that an output is not
possible unless PDBIN is low. Physically, this involves
finding an unused AND gate and doing some hacking and
cutting.

When I decide that a signal needs to be rerouted or

q The Computer Journal

changed, I have no fears about doing it. Most users consider
their boards to be sacred, but not I. My boards may have as
many wires running around the board as devices. Typical
changes are to upgrade the memory or change an address of
the board. Wherever possible I use existing traces, but
adding wires generally does not increase the noise on the
board. The biggest problem I have with modifications is that
the wiring often gets caught when I remove or insert the
board. The use of glues to hold wires down can help the
loose wire problem, but I may move the wire several times
before I am happy with the results.

When starting the project, I find that making a list of
- spare devices is absolutely necessary. Finding the normal
signals which you will need (PSYNC, PDBIN, 1/0), and
checking them with a scope first, will help familiarize you
with the devices before getting started. The most important
first step is to check the card in the normal operating mode
to see if it works before changing it (as in 16K memory
upgrades to 64K —does it work as 16K?). In several of my
memory upgrades, I forgot to check them first and had to
find troubles after the upgrade. Unless you have checked
the card first, any problems you run into afterwards may
get you questioning your changes.

Checking the board over many times and using a light to
try and see under chip sockets will help find the most
appropriate places to change. If you are careful, you can
remove the plastic part of the socket. This is possibie for
socket types that do not have solid bottoms or solder
shields. I have done this several times both for changes and
to find out where signals went. When I had to remove about
. 25 sockets {¥s of the board), I did mess one of them up,
~ which was easy to change with a solder sucker. When
replacing sockets or chips, first decide that it needs to be
replaced and thrown away. This clears the mind for the next
step, which is to cut the device out. For connectors or large
sockets, the objective is to mash it in some way so that the
individual pins are all that is left. Removing the individual
pins can now be done quickly and cooly, with little damage
to the board. I have seen too many people try to get the
device out in one piece, and in so doing practically destroy
the board. A good soldering iron and a plunger type solder
sucker seems to work best for me. Many people now say
that solderwick type products are needed for CMOS devices
because otherwise the static charge caused by the suction
will destroy the devices. I have tried solderwick and found it
to be far inferior to my large sucker. I have found that small
suckers will bounce more and are harder to use, even though
they fit nicely in small tool boxes.

For cutting the traces, use a small, sharp EXACTO knife.
These sharp cutting tools work best, as they will keep you
from using too much force and slipping, cutting both
yourself and the surrounding traces. Usually two small cuts
will be enough to open up a circuit. Be sure to make it as
obvious as possible so that you can find it later, when you've
forgotten what you did. Actually, you should document all
changes on separate sheets of paper and on the main
schematic. As in other parts of computing, documentation is
most important. For completing the new circuit I use wire

wrapping wire—this small, cheap wire is ideal for adding
new signal paths. Should you be changing power signals, use
slightly larger wire as this thin wire will not handle much
current before the voitage drop becomes detrimental. My
usual technique is to get a small bead of solder to flow
around the pin and then stick the end of my wire in it. This
technique is best, as it keeps me from getting too much
solder on the pin. Remember that a little solder can go a
long way. Use very small rosin core solder, not that which
comes with propane torches and is intended for mending car
bodies. Really, the finer a solder you can get, the easier it
will be to control the flow. Experiment to see how little you
can use before the wire comes off when pulled. I think most
people will be surprised at just how little solder is really
needed to provide the proper connection.

Logic

When trying to understand the output of a complex logic
circuit, I usually try to draw it out. However, you will
discover that rather large or complex diagrams can become
almost impossible to follow, and just plain old trying it often
works the best. Make the jumpers as best you can and check
your results with a scope. This approach works weil for
simple jobs, and for those complex ones, just break the
circuit down into smaller units. For socketed boards,
bending the chip pin out and then reinserting the chip is
used in place of cutting a trace. The pins left sticking
straight out are quite easy to solder to, and can be wiped
clean later to remove all traces of your experiments. And
experiment I do—it is a vital part of understanding
anything. I cannot stress that point enough, as so much of
the circuit design cannot be explained except through
experimentation.

For the real sticklers, a digitial analyzer is necessary. I
have a design waiting to be assembled that will turn my S-
100 system into an analyzer. Several people make them now.
You could also rent an analyzer if needed (about $100 to
$400 a month) for those really difficult problems. The
analyzer will give you a picture of 8 or 16 or 32 data signals
all at the same time. With such a device it is possible to see
the true timing relationships between signals. By this I
mean whether or not one signal is lasting a few nano-
seconds. longer than it should. These nano-seconds can
actually be where many of the problems come up, and no
form of scope work will ever give you that kind of
resolution. This resolution is obtained by taking a timing
snap shoot of maybe 500 nano-seconds. The analyser will
make it possible to see graphically how several signals
interact. You may discover that one device's signals are not
cut off fast enough once every tenth operation—this is the
kind of problem these devices were made to solve. The price
of new units is coming down and it will not be long before ail
good service shops have one.

Last Word of Advice

The last word of advice is one that I have said before and
which I will say again — DOCUMENTATIONI!l Documenting
yourhardware (and software) changes is an absolute

necessity. Several of the articles that I have written are
actually the documentation from the modifications I made.
You never know who will eventually become the owner of
your creative work. My systems are now in the hands of
people I only see at club meetings, and if I had not
documented all the changes properly, those system owners
would have mugged me long before this. I consider my hide
a most valuable asset, and documentation is the easiest way
I know to save it. My previous article on documentation
covers the topic quite well. To add to that is almost
impossible, except to say that hardware will require lots of
schematic drawings. Provide layouts of components before
and afterward. Show the schematic before and afterwards.
Make sure the documentation gives enough information to
explain why it was necessary to make the changes, and what
options are now availble. One option should always be that
of returning it to the original state. If this is no longer
possible, WHY NOT?

The last plug for good documentation is your own work. I
have yet to meet anyone that can remember all the fine
details of why this is that way one or two years down the
road. There is still one of my systems that from time to time
I get to work on. I've made several changes over a period of
four years, mainly in software. Four years and six other
systems can make it quite hard to remember what I did. My
documentation, however, has made it possible for both
myself and the owner to make many changes after a short
review of what went on last time. The new owner also keeps
the documetation up to date, mainly becuse I started doing
it right the first time. To sum it up, nothing is fixed in stone.
Accurate documentation will allow you to see the many
changes that have occurred over the years and react
accordingly.

Conclusion

What I have covered here are some tricks and indepth
comments on how I personally build systems. I didn't give
away all my secrets, but I hope I gave enough information to
get you interested in doing some of your own work. Myself
and the people at The Computer Journal want you to realize
that these machines are not the untouchables some people
want you to believe. However, caution and care, along with
some prudent research on your part, are needed when
attempting some of these projects. My advice is based on
first hand experience, and although your personal
experience will be different, my hope is that what I have
said will keep you from having anything but a wonderful
learning experience. n

L
Editor's Page, continued

elemental and boring for others. Our goal is to present a
balance of low, medium, and high level articles which will
help the inexperienced get started without boring the
experts. Even the experts in one area may be inexperienced
in another area.

We will continue to publish material on hardware and

The Computer Jourra: S

software hacking in order to establish a foundation of
.nformation needed to implement new ideas, and with the
demise of Microsystems we will add more coverage of the S-
100 systems. We are not as language intensive as some
publications, but we will concentrate on specialized
languages, utilities, and programming techniques suitable
for our area while leaving most general business type
programming to others.

Database management is one type of program which is
usually considered a business program, but which is also
needed for experimental data handling. Most database
programs are written for business office use (I'm not even
satisfied with anything I've seen for business use) but they
fail miserably when applied to experimental data. That's
why we are presenting the series by E.G. Brooner on
writing your own database program. The initial installments
use a mail list for examples because it is easy for everyone
to understand, but it is our intention to show how to develop
a specialized program to do what the high-priced programs
fail to do. We need your feedback, and are including a
request elsewhere asking about your database needs which
are not being met by existing programs.

The shake out in the microcomputer hardware, software,
and publishing fields has just started, and it will get worse

before it gets better, but there are tremendous
opportunities for those who get in on the ground floor of
real world applications. |

COMPUTER”

C
1 TRADER
MAGAZINE

% % LIMITED TIME OFFER » » «
BAKER’S DOZEN SPECIAL!
$12.00 for 13 Issues

Regular Subscription $15.00 Year

Foreign Subscription: $55.00 (air mail)
‘ $35.00 (surface)

Articles on MOST Home Computers,
HAM Radio, hardware & software reviews,
programs, computer languages and construc-
tion, plus much more!!"

Classified Ads for Computer & Ham Radio Equipment
FREE CLASSIFIED ADS
for subscribers
Excellent Display and Classified Ad Rates
Full National Coverage

CHET LAMBERT, W4AWDR
1704 Sam Drive ¢ Birmingham, AL 35235
(205) 854-0271
Sample Copy $2.50

6 The Computer Journa

Controlling the Hayes Micromodem I from

Assembly Language
by Jan Eugenides

In this article and the one that foliows, we will be
examining the Hayes Micromodem® II (or Ile), learning how
to access and control it from assembly language, and in the
process, writing a complete terminal program. OQur program
will have a large capture buffer (35K!), and will enable us to
download text and programs from bulletin board systems
(BBS) and other computers, and upload text and programs
directly from floppy disk. This will allow uploading of
programs of any length, as long as they will fit on a floppy!

You will need an Apple®], [+, or Je, one disk drive, DOS
3.3, and a Hayes MicromodemII or Ile. An assembler of
some kind would be very helpful. Source code in this article
will be presented in the S-C Assembler format. For those
without assemblers, I will give you a complete hex dump of
the program, so you can just type it in from the monitor if
you choose. This will allow you to use it as is, although
modifying it would be difficult.

The program will be presented in sections, for the sake of
clarity. As you examine Listing 1, you will notice some lines
missing. These will be filled in later, in part two of this
article. This time, we’ll examine the dialing routine, the
main program loop (incoming data and keyboard output), the
command handler, and toggling the capture buffer.

I'm assuming a reasonable knowledge of assembly
language in this article. If you find that it is over your head,
I suggest the following references:

e Assembly Lines: The Book by Roger Wagner, pub. by
Softalk Books.t

s Assembly Cookbook by Don Lancaster, pub by Howard
Sams.

o Apple Assembly Lines,
Software Corp.

published monthly by S-C

I also write a monthly beginners’ column for Scarlett, the
Big Red Apple Club newsletter, so that might help you out.

Dialing the Phone

Before we can do anything, we must dial the phone, right?
At the beginning of Listing 1, in line 1940, you'll see a JSR
DIALUP. After program initialization (which we'll cover
next time) this is the first routine. The routine itself is in
- lines 5710-8390. First, we clear the screen with a JSR
HOME. This is the monitor routine commonly used, at
$FC68. Then we tab down to line 5, using another monitor
routine, VTAB. Then we JSR to our own PRINT routine
{we'll examine it in detail next time) which grabs the ASCII
in line 5760 and puts it on the screen. Then we JSR to our
INPUT routine (also, next time) and get the phone number
from the user. The number is stored in memory, and IPTR
is left pointing to the address. Now we come to the heart of

the dialup routine.

In order to pass commands to DOS, it is necessary to
output a CTRL-D followed by the command at the beginning
of a line. From assembly, this is easily accomplished by
using the COUT routine built into the Apple monitor. Our
print routine uses COUT, so that makes things easy. In lines
6250-6280 we use our print routine to print

<CR» “CTRL-D PR#2" «CR»>

(the «CR» means carriage return, $8D), which tells DOS to
turn on slot 2 for output. DOS takes care of the details.
Then we print “CTRL-Q", which is now output to the
modem, and tells it to dial the upcoming number. These are
simply the same commands you would issue from the
keyboard if you were doing it manually. In my Hayes
manual, this information is on page 12. Then in lines 6300-
6340 we get the phone number from where we stored it in
memory, and output it to the modem, which obligingly picks
up the phone and dials the number. Easy, huh? Then we
print a «CR» “CTRL-D PR#0” «€CR®» to turn the modem
off for output (this does not hang up the phonel!).

The program returns now to line 1950, where we JSR
CDETECT to see if a carrier is present. If not, we start
over. If we have a carrier, we continue to line 1960, where
we enable the modem for input with

<CR» “CTRL-D IN#2" «CR»-.

Let’s look at the carrier detect routine, in lines 7310-7370.
Here we use one of the modem registers, CR1. Bit 3 is the
“No carrier detect” flag, in other words, if bit 3 is set, no
carrier is present. So, if we load the accumulator with CR1,
and then AND it with #$04, the result will be zero unless bit
3 is set, in which case the BNE in line 7350 will branch over
the RTS in 7360, and JMP to the start of the program. What
are modem registers, you ask? Read on.

Modem Registers

Controlling the MMII is comparatively easy. There are
two registers we need to be concerned with, called CR1 and
CR2. CR1 is the status register, and gives us information on
the incoming data, as well as various error conditions. For
our purposes, it is only necessary to understand that if bit
one of CR1 is on, then a character is ready in the input port,
which is at CR1 + 1. CR1 is also used to detect the carrier,
as we noticed above. CR2 is the modem control port, and
controls whether the modem is on line or off line, and can be
used to set the mode, turn on the transmitter, etc. We use
CR2 to hang up the phone, in lines 3580-3610, by simply
storing a zero there. Fortunately for us, the Micromodem
firmware takes care of the rest. The actual memory
locations for these registers are slot-dependent. 1 will
present the program to you configured for slot 2, and I'll

give you a configuration program which will allow you to
modify it for any slot you choose (and also to select upper
case only, or upper and lower case... see “A Note on Lower
Case" below). For now, let’s concentrate on CR1.

Incoming Data

In line 2040, the main loop begins with a JSR to a routine
which will display the address of the top of the capture
buffer as it fills with data. We'll look at that routine next
time. Next, we check CR1 to see if a character has been
received. The ROR in line 2070 puts bit one in the carry,
thus “if the carry is clear, we know there has been no
character received, and we branch to the keyboard input
routine. If the carry is set, a character has been received,
and we branch to the character input routine. The program
goes around and around in this loop, checking CR1 for input,
checking the keyboard for output, and handling each
character accordingly.

The character input routine (CHARIN) is in lines 2590-
2890. First, we collect the character from the input port
which is located at CR1+ 1. For the sake of the Apple, we
then set the high bit. Next we check for linefeeds, and
discard any we find. Otherwise all our lines would be double-
spaced. In line 2640 we check the capture flag. This flag will
be set by the “toggle capture” part of the program, and
indicates whether or not we want to capture the incoming
data in the Apple’s memory. If the flag is zero, we want to
capture it, and the program branches accordingly to the
STORE routine in lines 2730-2890. Otherwise, we simply
display the character on the screen in lines 2660-2720.
Notice in lines 2660-2700 we are checking for lower case
characters, which will be greater than $E0 (remember the
high bit is set). If lower case is found, it is converted to
upper case by subtracting $20. Then the Apple COUT
routine is called to output the character to the screen. Next
is the STORE routine, which simply stores the character in
the memory location pointed to by PTR and PTR + 1 in the
Apple zero page. Next, we go through the lower case
checking routine again, and display the character on the
screen as before. Then, in lines 2820-2850 we increment PTR
in preparation for the next incoming character. Thus, all
characters are simply stored sequentially in memory. In our
final program, the buffer will extend from $800 to $9000,
35K of space in a 48K Apple, and 10K is for DOS! See why I
like assembly? If you have a 64K Apple, you could get
snazzy and use the extra RAM to create an even bigger
buffer, up to 47K or so. Or if you have a 128K Apple...]
leave it up to you.

Finally in lines 2860-2890, we check to see if the buffer is
full, and if so, branch to a routine which prints a warning
and stops the incoming data. Otherwise we simply return to
the main loop. The buffer-full routine is in lines 2830-3020,
and works as follows:

First we put a $3F at INVFLG. This results in inverse
characters being printed to the screen. Then we print
“BUFFER FULL" in inverse (clever!) and set INVFLG to
$FF, which is back to normal. INVFLG actually is a mask
value, which is ANDed with the character before it is

Trhe Computer Journa® 7

:sn SFCBH8. w of, the common
“below to idp SASIC programmers

displayed on the screen. Thus the $FF results in no change.
while $3F strips off the two highest bits (Can you guess
what would happen if we used $7F to strip off just the high
bit? Right, flashing characters]). Next, we execute the
subroutine XOFF, which sends a CTRL-S out through the
modem. Most hosts recognize this character as a signal to
stop sending data. Thus, everything stops with “BUFFER
FULL” displayed on the screen, and the program waits for
you to do something about it. In the complete program,
you'll be able to either save the buffer to disk, or just zero it
out.

A Note About Lower Case

As you no doubt noticed in the previous code, all lower
case letters were converted to upper case for display on the
Apple screen. This is to make Big Buff compatible with
regular Apple['s and + 's. If you have a Je, or if you have a
lower case chip installed, these routines are unnecessary. In
my efforts to make this program useful to the most people, I
decided the best way to handle it was to write the program

8 The Computer Journal

so that it always converts lower case to upper case. Then, a
simple configuration program can be written which will
modify the program to use lower case on those machines
which can handle it, and incidentally, modify it for a
MicroModem in any slot. I'll give you the configuration
program next time.

Sending From the Keyboard

The keyboard input routine is in lines 2140-2580. For
upper case only, we simply skip over all the conversion
stuff. However, for Apple['s or [+’s with the popular shift
key modification, we can do some conversion. This
modification simply connects a wire from the shift key to
one pin of the game port. This pin can be read from
assembly language at location $C063. If the value is less
than $80, the shift key is being pressed. With this
information and a little knowledge of ASCII, it is quite easy
to write an upper-lower case routine. This routine is
presented in Listing 2. The configuration program will poke
this into the proper locations for those users who have lower
case capabilities. Notice that in lines 2180-2180 of Listing 1
we have left space for this purpose.

Table 1 is the Apple ASCII Character set. It differs from
regular ASCII in that all the high bits are set. Thus a
capital A, which would normally be $41, becomes $C1. This

Hex s8¢ 50 SRS L 1-1"] sCo sbe SED o
0- nul die [L P -]
L 28 soh dcl 1 A ") a]
92— stx dc2 2 E R L) r
*3- otk dc3 L] 3 [s c [
$4- [=13 dc4 s 4 D T d t
35— eng nak % S E u L[] u
6- ack syn 2 [F v € v
$7- bel etd ; 7 G w -] -
8- bs can < -] H X h x
L Lo nt om) L4 I Y i Yy
L 73 ¢ sub - H J z 3 z
$B- vt esc -] K L L3 {
C- 4 s . < [N A 1 i
*D- cr gs - - L}] [)
SE- [) rs > N ~ n ~
$F - [3 us / » [+] -] rub

Table 1: The ASC!! Character Set.

arrangement is due to the fact that the Apple displays
characters in three ways: normal, inverse, and flashing.
Regular ASCII appears as flashing characters on the Apple
screen (Remember, we discovered this in the “Buffer Full”
routine, above). In Big Buff, I have chosen to set all the high
bits on incoming characters, and then deal with them
thereafter as “high” ASCII.

Looking at Listing 2 now, in lines 1130-1150, we check for
a keypress. If there is one, we go ahead and get the
character, otherwise we just jump back to the main loop. In
lines 1160-1190, we first clear the keyboard strobe, check to
see if the shift key is pressed, and then branch accordingly.
Lines 1200-1250 check for the three special cases on the
Apple keyboard: shift-M, shift-N, and shift-P, which normally
output }, ~, and @ respectively. Since we want normal
capital letters, these three must be converted. The rest of
the capitals come out normally.

In lines 1270-1330, the lower case conversion takes place.

Since we only want to convert letters, we first check to
make sure the character is between A and Z. If it is, we add
$20 to it, which makes it lower case.

In lines 1340-1390, the three special cases we mentioned
earlier are converted. Finally, in lines 1400-1450, we check
for a back-arrow. If we have one, we call a monitor routine
at $FC10, which obligingly backspaces for us, and we then
output a blank to clear the screen of the unwanted
character. Big Buff uses combinations of the wESCP key
and one other key for all its commands. This keeps all
commands on line. In lines 1460-1490 we check for an
<«ESCP» key, and if it has been pressed, we branch to the
command handler routine. Otherwise, we store the character
at location $778, called CHAR.

Included in the MMII firmware is a routine called OUTA.
Like the registers, its location is slot-dependent, and we'll
go into that along with the configuration program later.
OUTA takes whatever character is in $778 and outputs it
through the modem. All we have to do, then, is put our
character at $778, and JSR OUTA. We will also use OUTA
in the uploading routine. Finally in line 1500, we return to
the main loop.

The Command Handler
Next, we come to the command handler, in lines 3210-
3400. As we noted before, control branches here if <ESC»
is pressed. First, the XOFF is sent to stop incoming data.
Then we check the next key pressed. Big Buff has seven
commands, as follows:

<4Escr Z Zeroes the buffer

<Escr X Hangs up the phone
<4Esc» S Saves the buffer to disk
<Esc» B Toggles the buffer on or off
<4Esc» U Uploads files from disk
<Escr C Catalogs the disk

<4Esch R Reviews the buffer

Thus, we simply check for each of these keys, and branch
accordingly. If the key pressed is none of these, the XON is
sent to start incoming data again, and we return to the main
loop. By the way, if you don’t like the letters I chose, just
plug in letters you like better. I will go into how to use each
command next time, when I describe how to use Big Buff.

The Capture Buffer

In the initialization part of the program, PTR is set up to
point to $800, the beginning of the capture buffer. Then. as
we saw above, as incoming data is stored in the buffer, PTR
is incremented so that it always points to the next available
memory location. Then, all we need is LDY #0 : STA
(PTR)LY to store the incoming character. In lines 3480-3540,
the zero buffer routine simply resets PTR to $800,
effectively “forgetting” all the data.

ESC-B takes us to line 3660, which toggles the capture
buffer on and off. First, we check CAPFLAG. If it does not
contain $FF, capture is on, so we go turn it off in lines 3760-
3810 by simply storing $SFF there. This value is checked by
the incoming data routine, as we saw before, and if $00 is

found there, the character is stored. In lines 3690-3750, the
opposite condition is true, so we turn on the capture by
putting a $00 there. Notice in lines 3860-4030, two short
routines to first save the current cursor position, then move
to the top of the screen, where we print "OFF" or “ON"
depending on what's happening, and then to restore the
cursor to its original location. This is so the user can easily
tell the status of the capture buffer.

You may have noticed also that each routine ends with
JSR XON : JMP MLOOP. The X-ON character is CTRL-Q,
which tells the host to begin sending data again. Remember,
when ESC was pressed, we sent the X-OFF, so before
returning the the main loop, we have to send X-ON.

Next Time

Next time, we'll examine the disk access routines and
develop a way to save the buffer to disk, and to upload files
directly from disk. We'll also add the initialization, a way to
review the buffer, input and print routines, and wrap the
whole thing up. I'll give you a complete listing, both source
and hex, and describe how to use the program. I will also be
happy to supply you with the program and complete source
code on disk for $10.00, to save you some typing. Send it to
me at 1543 N.E. 123 St., N. Miami, FL 33161]

Listing 1

Initialization goes nrere...

191 # o e e e

192¢ #Get number to call

190 o m e .

1948 START JSR DiALUP

19S9 JSk CDETECT Check for carrier

1968 JSR FRINT

197a .HS BCR4

198¢ ZAS - INM2C Turn on modem for i1nput
199 JHE 8L

2B e o

281@ #Ma1n program ioop

O B e

2078 »

204 MLOOF JSA SHOWBUF Show buffer filling up
2050 LDA CR1 Modem register

207@ ROF Test for bit one on

2080 BCC REYIN 1f not, no character at 1nput
port

2890 JSR CHARIN Get character from input port
D # o o el

211¢ = Lowercase keyboard 1mput

e I i T

2133 =

2140 KEYIN LDA $C800 Hevboard 1nput

2150 BFL MLOOP No key has been pressed
2160 NOF Leave space

2179 NOP for lowercase

218¢ NOP Routine

219¢ GOTONE BIT sCote Clear strobe

2200 JMP QUTPUT Skip lowercase routire -
configure program pokes

2210 « nNew code 1n hers ‘or jowercase
action

5o
2220 =

223¢ #Lowercase routine (first part
2242 sgets poied in by configure program

205 #m e e

22466 CPX %880 Fresseag”

227¢ BCS LOWER No. sO lower case
2280 CMF #$DD

2299 BEQ CAP Capital M

2300 CMF #$DE

231 BEQ CAP Capital N

232 CMP #8CO

233e BEQ CAFP Capital P

22490 QUTRFUT JMP RACH

225¢ LOWER CMP wsC@ Set range from A-2 oily
2360 BCC OUTFUT (A, no conversion
237 CMP #sDE

238¢ BCS QUTPUT »l. nO conversior

Cmrmmn ear -
NOTTRGlET Lourma

2399 cLC

24982 ADC wus @ Convert to lower case
241 JMP OUTPUT

2420 CarP SEC Special cases "N” AND "Mm"
243¢ SBC #%1¢

2449 JMF OUTFUT

2452 CAFF CLC Special case "F"
2460 ADC #s1@

247a JIMF OUTPUT

248@ BACHK CMF w888

2499 BNE ESC

2500 JSR S$FC1l¢

29516 LDA #sax

2529 JSK CouT

2532 LDA ws$88

25490 ESC CMP ws9E Excape”

255@ EEQ ESCAFPE Yes-gao to command hanmgler
routine

2560 STA CHAR Set up to output char thru
modem

2570 JSR OQUTA Output character
258¢ JMP MLOCF

259¢ CHARIN LDA CR1+g Get char from i1nput part
2600 ORA w$By Set high bit

2612 CMF #sga Linefeed”

2624 BEQ SKIF Skip linefeeds

263¢ STA TEMF Save character

2649 LDA CAPFLAG Check capture status on or of#é
2650 BEQ STORE

2660 LDA TEMF Retrieve character
2678 CHMP #s$EQ Lowercase”™

2680 BCC DISF No-d:isplay on screen
269@ SEC

2702 SEC #s$2Q Convert to upper
2710 DISF JSK COUT Display

220 RTS

2730 STORE LDA TEMF Retrieve character
2740 LDy #sua

2750 STA (FTR) .Y Save character 1n buféer
2766 LDA TEMF

277¢ CMP wsEQ Lowercase”

2789 BCC CHAKRTN No-display on screen
79w SEC

28w SBC #$2¢ Convert to upper case
281¢ CHARTN JSK COUT Frint to screen

2820 INC PTR Increment buffer counter
283a LDA FTR

2840 BNE Sk IFP

285y INC FTR+1

2860 SKIP LDA PTR+1

287 CMP #s5@ Buffer full~™

2869 BCS FULL Yes-print warning
2899 RTS Done

2900 #-m—— e

291@ #Full buffer routine

2 W ..

297 =

2943 FULL LDA #s3F Inverse

295 STA INVFLG

2968 JSR PRINT

297¢ «ARS -“BUFFER FULL"

298¢ -HS 8Dew

2999 LDA #sFF Normal

3000 STA INVFLG

R{-3¥"] JSR XOFF Stop 1ncoming data
3020 RTS

3030 e e m

324@ #SEND X-QFF

3050 #-c-- e

3R6d XOFF LDA #%53 Ctrl-8

307¢ STA CHAR

3080 JSR QUTA Send X-0OFF

3999 RTS

3180 Ao

3118 #SEND X-ON

310 e e

3138 XON LDA ws?1 Ctri1-Q

3149 STA CHAR

3150 JSR OUTA Send X-ON

3160 RTS

3170 e

3180 «Escape command handler

3P0 B e el

3200

3218 ESCAFE JSR XOFF

3220 LDA sCoo0o Get keyboard i1nput
3230 BPFL ESCAPE

3240 BIT sCe10

3250 CHP wsDA b 4

3260 BEQ ZBUFF Zero buffer

327¢ CHP esD8 X

3280 BEQ HANGUP Hangup phone

3299 CMP #eD3 8"

3300 BEQ SAVE Save buffer

3310 CMP weC2 “B*

3320 BEQ BTOGL Toggle capture

3330 CMP #sDS i

3340 BEQ UPLOAD Upload files

10 The Computer Journal
L"t‘ng 1' Cont‘nued 6270 «AS ~"FPR#2" Turn on modem for output
628@ .HS B8D9100 Print ctr1-~Q
3350 CMP wsC3 “c 6290 LDY we Print phone number
3360 BE@ CAT 6348 NUMOUT LDA (IPTR),Y
3372 CMP wsD2 &Z10 BEQ DONE
338¢ BEQ REV Review buffer 6320 JSR COUT
3390 JSR XON 6330 INY
3499 JMP MLOOP 6340 JHMP NUMOUT
3419 UPLOAD JMF READ 4350 DONE JSR PRINT Print CTRLD"PRe#g"
3420 CAT JMP CATALODG &36¢ .HS 8D8DB4
3432 REV JMP REVIEW &370 <AS -"PREG" Turn off modem for output
. 344¢ SAVE JUMP SAVEBUF &3ee .HS 8Dee
345¢@ « e i 5398 RYS
J460
347 Other stuff goes here... -
3480 »
3490 IRUFF DA wsode 7310 #o e e
I50¢ STA FTR 7320 CDETELCT
3510 LDA #sg@8 7332 LDA CR1t
352@ STA PTR+! 7342 AND #4 check bit 4
352 JSK XON 7350 BNE NOCAK
354¢ JMP ML OOP 73408 RTS Carrier detected, resume
3554 #-——n bt D e e 7378 NOCAR JMP STARY No carrier, start over
356@ #Hangup phone
370 W o
3T82 HANGUF LDA #s8@
359¢ STA D6
o LDA #ed9 : :
STh CR2 Hang up modem Listing 2
JMF SAVEBRUF Last chance'
apture on and of+ OO o
A R e e i®19 #Main program loop
3650 1020 e e
36608 BTOGL LDA CAPFLAG Get flag 1830 «
3670 CHMP WSFF [o T 3ed 1042 MLOOP JSR SHOWBUF Show buffer filling up
3680 BNE CAPOFF No-turn it off¢ 1050 LDA CR1 Modem register
3650 LDA #8220 Turn 1t on 1060 ROR Test for bit one on
3700 JSR CURS Save cursor pos:ition 187@ BCC KEYIN 14 not, no character at 1nput
3710 JSK PRINT Change 1nodicator port
3720 .as - ON® 1880 JSR CHARIN Get character from input port
3730 .HS o0 1090 #mwm e
3740 JSR RCURS Restore cursor position 1180 » Lowercase keyboard input
3750 JMP CONT} 1110 -- -—-
3760 CAPOFF LDA #$FF Turn 1t off 1120 »
3778 JSR CURS Save cursor position 1130 KEYIN LDA $Coo9 Keyboard input
3780 JSR PRINT Change indicator to "OFF" 1140 BMI GOTONE A key has been pressed - go get
790 .AS -"OFF " it
3800 .HS B¢ 1150 JMP MLOOP No key has been pressed
3810 JSR RCURS Restore cursor pos:ition 1164 GOTONE BIT sCo1e Clear strobe
3826 CONT1 JSKR XON 1170 LDX 9Co63 Game port
3830 JMP MLOOP 1180 CPX #s8¢ Shi1ft key pressed”
3840 « 1190 BCS (OWER No, 80 lower case
3850 #———— e __ 1200 CMF #s$DD
3862 CURS STA CAPFLAG 1210 BEQ CAP Capital M
3878 LDA Cv Vertical cursor position 1220 CMP #8$DE
3880 STA VTEMP 1230 BEG CAP Capital N
389 LDA CH Horizontal cursor position 1240 CHF wsCé
3990 STA HTEMP 1250 BEG CAFP Capital P
3910 LDA ws@2 VTAE 2 1260 OUTPUT JMP BACK
3920 STA CV 127@ LOWER CMP #s$Co Set range from A-Z only
3939 JSR VTAB 12680 BCC QUTPUT <A, No conversion
3940 LDA #13 HTAB 13 1290 CHP #sDB
3950 STA CH 1300 BCS OQUTPUT >1, no conversion
3960 RTS 1310 CLc
3979 « ——— 1320 ADC #8283 Convert to lower case
3986 RCURS LDA HTEMP 1330 NP QUTRUT
3999 STA CH 1340 CAP SEC Special cases "N" AND "“m"
4000 LDA VTEMP 13350 SBC #s1¢
4010 STA CV 1360 JMP QUTPUT
4920 JSR VTAB 137@ CAPP cLC Special case “"P"
4030 RTS 1360 ADC #8190
. 1390 JMP QUTPUT
Other stufé goes here... 1400 BACK CMP we88 Back arrow?
1410 BNE ESC No, check ¢or command
5560 1420 JSR $FC1® Backspace one
5470 # 1430 LDA #sAR Print a space
3680 s=Get number and dial phone - 1442 JSR COUT
26590 1450 LDA #e88 Restore accumulator
S700 « 14468 ESC CMP #$9B Escape”
S71@ DIALUP JSR MOME 1479 BEG ESCAPE Yes-go ta command handler
5720 P1 LDA #8905 routine
=730 STA CV VTAB % 1400 ETA CHAR Set up to output char thru
5749 JSR VTAB modem
5790 JSR PRINT 1492 JSR OUTA Output character
5760 .AS -"DIAL WHAT NUMBER™" 1560 IMP MLO0P
=770 .HS 08 1519 CHARIN LDA CR1+1 Get char from 1nput port
=788 JSR INPUT BET NUMBER 1322 ORA #9690 Set high bt
%5799 JSR PHNUM 153@ CMP #s8A Linefeed”
@80 RTS 1540 BEQ SKIP Skip linefeeds
s810 135350 STAa TEMP Save character
1560 LDA CAPFLAG Check capture status on or off
Other stuff goes here...
1570 BEQ STORE
65220 B e e 1580 LDA TEMP Retrieve character
6238 #DIAL PHONE 159¢ CMP 8%E2 Lowercase”
4240 » 1600 BCC DISP No-display on screen _
62%8 PHNUM JSR PRINT Print CTRL-D"PRW#2" 1610 SEC
6260 .HS 8D8DE4 1629 SBC #e20 Convert to upper
continued on page 26

The Computer Journa 11

% Problems
. Y= Wwith your

: SE = Tell ELIZAI

Meet ELIZA,
the computer psychotherapist.

Created at MIT in 1966 to run on a large mainframe, ELIZA has become
the world’'s most celebrated artificial intelligence program. ELIZA will
analyze any statement you enter and respond in true Rogerian fashion

- and her remarks are often amazingly appropriatel

Unlike the stripped down versions you may have seen, our ELIZA has
retained the full power and range of expression of the original
mainframe program.

Best of all, ELIZA comes with the complete Source Program |written in
BASIC) ... anyone, even a beginner, can easily customize ELIZA's
- responses.

So next time people ask you what your computer can do, bring out
ELIZA and show them!

“"Much more than a mere game .. you'll be impressed with Eliza..a convincing
demonstration of artificial intelligence” - PC magazine

“Delightful entertainment ... an idea! medium for showing off your system.”
. - Microcomputing magazine

ELIZA is only 545 and available in the following formats:
_ s Apple il, Il plus, lle, lic, I * 8” disk for all CP/M systems

¢ IBM PC and all compatibles ® 5'/a” disk for most CP/IM systems
ftlflCIal * Commodore 64 (disk or cassette) (specify make and model)

Please add $3.00 for shipping and handling

. nte”igence (Califorrma residents, add 62 % sales tax)
RESEARCH GROUP e vosecrs. Gl JBB

921 N. La Jolla Ave., Dept. C, Los Angeles, CA 90046 ¢ (213) 656-7368 « (213} 654-2214

— -/

12 The Computer Jjcurnal

$-100 8 TO 16 BIT RAM CONVERSION

by Lance Rose

Background

With the temptation these days to switch over to 16-bit
processors, I know that many of us hesitate because of the
_limitation of our older 8-bit wide RAM boards. While some
of the new processor chips are available with an 8-bit
external data bus such as the 8088 and the 68008 (see “Build
a 68008 CPU Board for the S-100 Bus" in Vol. 2, No. 7 of The
Computer Journal), some of the speed advantages are lost
without the ability to do full 16-bit wide data transfers.
There are, of course, a number of 16-bit wide RAM cards
marketed for the S-100 bus but in most cases the price of
these is pretty steep. In addition, what do you do with your
old 8-bit RAM cards?

Well, there is a solution to these problems. If you are
fortunate enough to have some 84K RAM boards that lend
themselves to this type of conversion, you can use them in
pairs to accomplish 16-bit wide data transfers. The actual
modification depends, of course, on the exact RAM card you
have. In my case it is the Digital Research Computers 64K
CMOS static RAM, and this is the board this article is based
upon. If you don't have this type of board perhaps you can
still glean enough of the philosophy from here to accomplish
the conversion for your own particular type of RAM board.

Modifications

To understand what the necessary modifications are to
get full 16-bit data transfers, it is first necessary to look
briefly at the way data transfers are made on the S-100 bus.
When an 8-bit RAM board is selected with address lines A0-
A23 (extended addressing) it either presents data for input
on the 8 data-in lines DI0O-DI7 or accepts data for output on
the 8 data-out lines DO0-DO7. The original designers (if the
S-100 bus can actually said to have been “designed”)

_unknowingly did us a great favor by separating the data-in
lines from the dataout lines. Some other buses use
bidirectional data lines and thus don't have the capability
for this type of expansion.

The logical thing to do, and what in fact was actually done
when creating the IEEE 696 standard, was to gang together
the datain and dataout lines to create a 16-bit wide
bidirectional data bus to be used when devices on the bus
are capable of 16-bit transfers. In this case, the data-out
lines DOO-DO7 are used for the even-addressed data byte
and the data-in lines DI10-DI7 are used for the odd-addressed
data byte regardless of which way the transfer occurs.

Knowing this, we see what must be done to change a pair
of 8-bit wide RAM boards to what appears as a single 16-bit
wide RAM board. First of all, it turns out to be easiest to
separate even-addressed data from odd-addressed data,
using one board for each. This can be accomplished fairly

easily by exchanging the A0 and A16 data lines on the
board. Secondly, an additional bus driver or receiver must
be added to each board to achieve bidirectional capability on
either the DI or DO lines, depending on whether the board
is even or odd. Thirdly, the board must respond to the
sXTRQ"® status signal and in turn generate the response
signal SIXTN® indicating that the device selected is capable
of 16-bit transfers. If a bus master asserts sSXTRQ® and the
slave device (a RAM board in this case) can't do 16-bit
transfers, it doesn't respond with SIXTN* and the master
must make the read or write with two single bytes instead
of a 16-bit word.

Circuit Modifications
Figure 1 shows the necessary circuit modifications to the
above-mentioned RAM boards to make them capable of the
16-bit transfers. All references to IC numbers in this figure
correspond to the numbering convention used in the

I

BOTH:
A’ 1 33
Aig
EVEN:
A 1[+5 "”'_]9_22{ vy —
L P ERHER L BEEREEE)
e 2 L9 e]
LA LS
s, L\
s 2 °3 @sixTNn®
At @ f ’ijj ‘:F)
i ' E
= sXTRQ*
OoDD:
10 ":——M 1) v J
T PREEENEHBBEPEERE
ol L 1N I YT J
MO i A [__L—l)E ’

SXTRQ*®

Figure 1

schematic diagram provided by the manufacturer with the
board. A16 is moved to the position previously occupied by
A0 while the A0 input is fed to one part of the 74LS157
multiplexer. When sXTRQ®* is high (not asserted), the A0
input is passed along to what used to be the input of A16 to
the board select circuity. This makes one board of the pair
respond to even addresses and the other to odd addresses.
When a 16-bit operation occurs and sXTRQ* is asserted, a
fixed level signal is fed to the select circuitry so that both
boards respond at the same time.

Two additional sections of the multiplexer are used to
select the proper inputs to use for turning on the bus
drivers and receivers. These are slightly different for the
even and odd boards. The last part of the multiplexer is
used to generate the SIXTN® response signal by borrowing
part of the select logic normally used to reject any bus cycle
where sINP is true (I/O operations). Since this is already done
with SMEMR here, the sINP is superfluous and we can
borrow part of the 74LS266 open-collector XOR gate to
drive the SIXTN* bus line.

Technique

Figure 2 shows a photograph of one of the modified
boards. Each of the two additional chips (a 7418244 and a
74L8157) is “piggybacked” onto one of the existing chips
aiready on the board. They are supported in mid-air by
short pieces of wire-wrap wire which also serve to make the
power and ground connections to the additional chips. The
connections are made by carefully wrapping the necessary
wires around the legs of the IC package using a fine pair of
needle nose pliers. While some people have told me they use
a wire wrap tool for this, I still prefer the needle nose pliers
for better control. The two connections to the bus are made
by soldering (using very little solder!) the wires to the upper
part of the board fingers. In two other cases (the
connections to A0 and A16) the connections are made by
inserting one end of the wire into the socket pin normally
occupied by an IC leg, said IC leg being previously bent out
of the socket. These two connections can also be made by
soldering.

Some helpful hints are in order here. First of all, the
wires connecting the piggyback chips to the supporting
chips should be cut to about an inch and a half long with
approximately a half inch stripped from each end. This
keeps the new chips up far enough to avoid shorting to the
lower IC pins but close enough to prevent interfering with
adjacent boards in the bus (at least in the case of every
other slot being installed).

Another tip is to pre-cut and connect all the wires to the
upper package first. Then, holding both packages in one
hand, use the other hand to wrap the wire around the leg of
the lower IC. About 4 or 5 turns around the upper legs is
about right. With the lower chip, if you are connecting to a
pin that is bent out of the socket the same number of turns
is fine. If you are connecting to a leg that will remain in the
socket, try to limit it to about two turns. Much more and the
chip won't seat back in the socket far enough and the
connection might not be adequate. My own experience is

Tne Computer Jourrai 1%

Figure 2: View of installation of additional parts on even board.

that this makes for a completely reliable system if done with
a little care. It may lead to some eyestrain, so a few shorter
sessions might be better than doing it all at once.

Once all the connections are made, you can try checking
the boards out. In order to check them completely you will
have to beg, borrow, steal, purchase or build a true 16-bit
CPU board. If you're one of the few people using front
panels these days, you can make some preliminary tests
using that. Successively stepping through addresses with
the EXAMINE NEXT switch should cause the select LEDs
on the pair of boards being tested to alternate. Briefly(l)
shorting sXTRQ* to ground should cause both LEDs to
come on at the same time. Do this with both an even and an
odd address selected to make sure that both boards in the
pair are responding to sXTRQ®*.

The next step is to try the boards with your current 8-bit
CPU. Since it should keep the sXTRQ* signal high (negated),
the boards should operate in their 8-bit mode as before. If
not, look for a wiring error before proceeding. Finally, try
using a true 16-bit CPU board with the newly-converted
RAM cards. Be sure to check and make sure that the
SIXTN® line on the CPU board is pulled up to 5 volts with a
resistor (the Compupro CPU-68K seems to lack this). The
boards should function properly as before except that
programs will now run quite a bit faster. How much faster?
I tried some short benchmark programs to see. For code
that is memory intensive, you should get a speedup of 60
over the 8-bit equivalent. Register intensive code is
improved less (around 35) due to the fact that a higher
proportion of clock cycles are spent doing internal
operations in the microprocessor. As a rule of thumb I would
say that a typical program will run 40-50 faster than before,
not a bad improvement for about $2 worth of parts per
board and an afternoon's work (eyestrain provided at no
extra charge).

Although not everyone is using the 84K CMOS RAM card
I talk about here, there are many varieties of such cards and
others are probably open to similar modifications. The
specifics may be different but the principles will be the
same. The biggest problem I have since the conversion is
how to keep the 18-bit CPU I borrowed a little bit longer. B

14 The Computer Journa:

TIME-FREQUENCY DOMAIN ANALYSIS

by Bert P. van den Berg, President, BV Engineering

Time Domain Signals and the Fourier Transform

In engineering analyses, the behavior of systems can be
described as a function of time or as a characterization of
" the frequency content of the output signal. Both methods
have advantages and the choice of which method to use
depends heavily upon the system itself, whether the system
is linear or nonlinear, and what the resuits are going to be
used for. The frequency domain is the most convenient for
linear analysis, while the time domain is most suited for non-
linear analysis. The time domain and frequency domain are
related through the Fourier transform.

Any time domain signal S(t) can be represented as a
mathematical series of sinusoids which, when evaluated as a
function of time and summed together, yields the original
signal S(t) as shown in equation 1. The Fourier transform of
8 time domain signal decomposes the signal into these
constituent frequency components. FEach of these
components consists of a sinusoid of a fixed frequency with
its associated magnitude and phase.

n

S(t) = E A Sin2 Il F; t+ B;)

=1
. The Aj represent the magnitude of the ith component whose
frequency is Fj Hertz and whose phase angle is B; radians.

Fourier transform depends upon how much we know about
the time domain signal.

When using a computer, the time domain signal S(t) is
“sampled.” Unless we have infinite storage capability we can
store only limited information about the signal. We might
divide the signal into 100, 200, or even 500 samples, but no
matter how many samples we store, we are losing some
information. When the signal S(t) contains frequency
components higher than one-half the sampling frequency,
errors due to “aliasing” appear. Aliasing results in errors in
reconstruction of the original time domain waveform due to
a lack of sufficient frequency information.

Figure 1 shows a sine wave which is sampled at rates of 3
and 20 times per period (the triangular and square legends
respectively). There is no way of differentiating the high
frequency sine wave from the lower frequency sine wave
when only the triangular samples are used. This graphically
demonstrates the problem of aliasing, a loss of information
of the desired (higher frequency) signal. The use of the
samples represented by the square legends results in no loss
of information. Aliasing can also be caused by other
phenomena and is discussed further in the next section.

For simple signals with little harmonic content, the
signals may be accurately described with just a few spectral

components. Time domain sieals with discontinuities and/or

The Direct Current (DC) com-
ponent of the signal S(t) is obtained

Exanple of Aliasing Due to Insufficient Sampling

8.15E+81

when Fj=0 Hertz. The collection
of these component frequencies,

8. 15E+0!

called the “spectra” of Sit), com-
pletely describes the signal Sit).

§.90E+80

i au 0.99E+00

. The individual frequencies making

up the spectra are called the “spec-
tral components”.

9. 30E+00 / /

i

0.30E+08

Errors and the

|
O
r/.AL/

Fast Fourier Transform
The number of spectral com-

- 01400

- J0L+00

§
1
9
n
a
ponents needed to accurately re-]
present the signal S(t) depends upon

the waveshape of the time domain
signal. The waveshape and period

7 7

- 90+00

of the signal determine the fre-
quency content of that signal and

= K - 900
S

a sufficient number of spectral

=, 13E+6]

components need to be evaluated
in order to prevent errors in the
reconstitution of S(t). In turn, the
number of spectral components
that can be calculated with the

131481
9.00E+00 0.25[+01 @.50E+@! @.75E+81 0.10E+82

Figure 1: Aliasing Errors Due to Insutficient Sampling

0.131+@2
¥-axis (Radians)

The Computer Jourma 19

vary complex waveshapes require

Reconstruction of S(t)

more components to adequately

8. 128481

8.36E+8!

describe them. As an example, let's

take a signal S(t) with a period of
0.2 seconds and reconstruct Sit)

\ :“25 Ms [/
8.26E+81

using a varying number of spectral
components to show the effect on

\ |

the fidelity of the results. The re-
sults of evaluating the first 3, 5,

8.175+01

and 256 components of the signal's
spectra are plotted in Figure 2

:he— 50 MS—EQ /
/ 5

along with the original signal. The

[¢))

A P

original and reconstructed signals
are shown on different scales to

3

prevent overlap on the graph. It is
impossible to differentiate the

\

-.261+8]

original signal from the recon-
structed signal when 256 com-

-, 241+

//

O -

ponents are used.
The Fourier transform was used

-, 36[+8}

R
e
¢
0
n
§
¢
P
u
¢
{
¢
d
§
i
g
"
i
|
$

Merrdd - 1284l

to decompose the original signal (t)
to its basic sinusoidal components.
The Fast Fourier Transform (FFT)}
is 8 method of computing the Four-
ier transform faster by removing

8,005+

8. 4aL-0!

0.00E-01 0.121+00 0.16L+08 9,205+
Tine (Seconds)

Figurs 2: S(t) and Reconstructed S{t)

some of the calculations which result in redundant informa-
tion. With the advent of the FFT described by Cooley and
Turkey in 1965 and the availability of inexpensive computers,
the use of the Fourier transform has been so simplified as to
make this analysis technique very attractive to today's en-
gineers. Besides being fast and easy to compute, the FFT is
reversible. That is, the Inverse Fast Fourier Transform (IFFT)
exists and may be used to derive a time domain signal from its
constituent spectra.

The FFT and IFFT operations provide powerful problem
solving tools in the analysis of system and circuit response
to time domain stimuli. A number of techniques exist for
computing the transient response of a system to time
domain inputs. Included in these techniques are Fourier and
LaPlace transforms, Z transforms, and time domain

. convolution of the system impulse response. FFT techniques
are the most popular due to the systematic way that the
problems can be set up and the speed with which we can
arrive at a practical solution.

Computing System Response Using the FFT

Now that we have the tool to decompose a signal into its
constituent frequency elements, it is a simple matter to
compute the transient response of a system given its
transfer function G(s). Consider the general form of the
transfer function G(s):

n0)+n(1)s+n(2)s 2+ n{3)s 3 ... etc.
d(0)+d(1)s+0d(2)s 2+ d(3)s 3 ... etc.

G(s) =

Where n(0) is the zeroeth order numerator coefficient, n(1) is
the first order coefficient of s in the numerator, etc. and

S=jw= jZHf.

The response of the system Gis) for each of the individual
spectral components of the signal S(t) described by equation
1 may be computed by direct evaluation. The results of this
“filtering” operation is to pass each component frequency of
the spectra with appropriate magnitude and phase
“through” the transfer function G(s). The transfer function
will affect each of the spectral components differently
depending upon the transfer function characteristics. The
operation we are performing is that of multiplying the
spectra of a signal S(t) by the spectral response of the
transfer function Gis).

Both the magnitude and phase of each spectral component
will be modified by the transfer function. The results of this
“filtering” operation is a new spectra, 0(*), different from
the original spectra of S(t). When the IFFT of 0(*) is
computed we get the time domain output waveform of the
system 0(t). O(t) is the transient response of G(s) to stimuli
S(t).

Let's take the signal S(t) of Figure 1 and compute the
transient response of the transfer function Gl(s) given by
equation 3.

S
s + 3400s + 3.4E5

G(s)=

The results are shown in Figure 3 where both the input and
the output transient response of the system Gis) are plotted
on the same graph.

Impulse Response and Errors Due to Aliasing
The FFT by its nature works only for periodic

16 The Computer Jourra:

In the last section we saw what

8. 125+t

Iransient Response of G(S) to S(t)
|

8.751-81

happened when we multiply the

\ 2w </

spectra of a time domain signal S(t)

824108

by the spectral response of a trans-
fer function G{s). What happens

§.551-01

when we multiply the spectral re-
sponse of two transfer functions

\:"&r 0 |ms eé/

- i+

or the spectra of two time domain
signals? Multiplication of two

8.33E-01

y/

is, if G(*) and H(*) are the spectral

-y %S =3 o—e

responses of two transfer functions

8.13E-01 G(s) andH(s), then GH(*) = G(*)H(*).

{ - 175441 Jr\ \

It matters not whether we multiply

[mand "= N7

the transfer functions together
first, then compute the resulting

0
u
t
P
u
t spectra is a linear operation, that
$
1
]
]
d
l

-, 261481 s

- 98-8

spectral response, or whether we
compute the spectral response of

- J6E+01

each transfer function separately
and then multiply them.

-, 3E-8t

0001400 0.400-01 080501 .10

Tine (Seconds)

Figure 3: Transient Response of G(s) to S(t)

§.165+00

In practical terms what this
means is that when a system is
described by more than one trans
fer function block it is not necessary
to compute the IFFT and FFT be-

0.201+00

signals—signals that repeat themselves continuously. This
does not mean that non-periodic signals may not be
analyzed, but that we must be smart about how we define
the signal to be processed. If a linear system Gis) has a non-
zero impulse response of T seconds, then any waveform
which is static for a time greater than Tj seconds will have
. resulted in the system having arrived at a “steady state.”
Once a system has reached a steady state condition, it does
not “remember” whether the input signal was periodic or
not.

Periodic waveforms can be treated as non-periodic with
the proper selection on R, the waveform period. There are
some restrictions on the choice of T or another type of
aliasing error is introduced. If the input signal S(t) is chosen
- such that the transfer function G(s) has not had time to
steady-state before S(t) repeats, then the output waveform
0(t) will be corrupted. The error due to this phenomena is
sometimes called “leakage.”

The error introduced by leakage can be graphically
demonstrated by repeating the FFT-Filter-IFFT operation
of the previous example with the waveform shown in Figure
4. Figure 4 shows an input waveform S(t) identical to that of
Figure 3 but with the leading and lagging edges of the
waveform shortened to such an extent that they no longer
meet the criteria for steady state conditions imposed by the
impulse response of G(s). Note that the output 0(t) of Figure
4 is different than that of Figure 3. Even though the input
waveform has the same slope as before and the width of the
pulse is the same, the value of the negative peaks of the
output 0(t) have different values.

Multiple and Spectra

Transfer Functions

Multiplication

tween each transfer function block. It is not necessary to
return to the time domain between each transfer function and
then return to the frequency domain to continue to compute
the transient response of a system with more than one trans
fer function. The two operations are identical:

S(t)—FFT—G(s)—IFFT—FFT—H(s)—IFFT—O0(t)
S(t)—FFT—G(s)—H(s)—IFFT—0(t)

There is another consideration when using a computer to
perform spectra multiplication; that of the dynamic range of
the mathematics involved. When multiplying spectra of
transfer functions it is very easy to exceed the dynamic
range of the math package of most small machines. The
range of all mathematical operations must fall between 10 to
the -38th and 10 to the +38th power. Consider two
transfer functions with a combined power of s to the 8th; at
any frequency greater than 50KHz or so the computer math
package will over or under-flow. If such errors are
encountered the use of the first form of the above
operations may prevent grief.

What about the meaning of multiplication of the spectra
of two time domain signals Sit) and R(t)? Multiplication in
the frequency domain is the same as convolution in the time
domain. An often-used means to obtain the transient
response of a system G(s) is to convolve the input waveform
by the impulse response of transfer function Gis). If you
know the transfer function but not its impulse response,
simply perform the IFFT of the spectral response of the
transfer function. The IFFT of the spectral response of a
transfer function (or electronic circuit) is the impulse
response of that transfer function.

If a very fast way to convolve two time domain

The Computer Journal 17

waveforms is needed, take the FFT

Transient Response of G(S) to S(t)

of each signal and multiply their l 8. 128+81
spectra followed by an IFFT op- m—

. 8.731-61
25IMS Y

eration. You get the convolution of

techniques! These operations take 0.24E+08
only seconds to perform as opposed

l
l
i
two time domain signals using FFT \ !
I
i
f
{

:: / 8.53E-01
7

to hours if done in the time domain
on a small computer.

-0

/
— Al
oy
(@]

Non-linear Operations

VS // 035101

A

The fact that we can use the FFT

and IFFT to rapidly switch between -, 170484

\ N 9.150-01

the time domain and the frequency
domain arms us with an analytical

N

tool to analyze systems involving

—rhs N3 ALY oL - = g T e

0
u
¢
P
u
¢
$
i
g
n
i
l

’_J e "N-<1

both linear and non-linear elements. -, 26E+81

: - - SO-@2
The following example demonstrates / /

how the response of a system con-
taining a full wave rectifier, a sat- /

urated amplifier with unequal clip- - J6E¢

B - 251-01
Ding levels, several transfor fune O.OE 0.24-00 .00 0.0 .9E-01 0.2

tions, and a multiplier can be easily
analyzed.
Figure 5 shows the block diagram

Time (Seconds)

Figure 4: Demonstration of Error Due to Leakage

of the system to be analyzed. It is desired to compute the
waveforms at all nodes in the block diagram in order to estab-
lish acceptance criteria for a circuit to be tested on a volume
basis. The analysis performed for this example uses “nominal”
values to establish the normal operating conditions of the
system. In actual practice, parameters would be modified to
represent 8 worst case situation in order to prevent good
circuits from being rejected and bad circuits from being
passed.

The input waveform is a sinusoidal “bundle” shown in
Figure 6. G(s) is a bandpass filter described by:

1250 s
241250 5 + 4.0E7

G(s)=

The stage following the bandpass amplifier saturates for
values of output above 10 voits in the positive direction and
below -8 volts in the negative direction. Following tha
saturating amplifier is a full wave rectifier followed by a

ICV_ \/—r- H()

S(t) G® [Ay * _]

X 01

Figure 5: Block Diagram of Non-linear System
—

simple lowpass fiiter H(s):

H(S) =« ——
1+0.001s

The output signal from the lowpass amplifier is multiplied
by the original input signal S(t) to form the total system
output, 0(t). In order to arrive at these waveforms, the
following operations are performed:

a) Perform an FFT on the input signal S(t).

b) Multiply the spectra of S(t) by the spectral

response of Gis).

¢) Perform an IFFT to get back to the time

domain; the resulting wave form is that at the

output of the bandpass amplifier, G(s).

d) In the time domain, clip all signals greater

than + 10 volts and less than - 6volts.

e) Full wave rectify (take the absolute value) of

the resulting waveform.

f) Perform an FFT on the resulting signal from

step e).

g) Multiply the spectra of step f by the spectral

response of the lowpass filter H(s).

h) Perform an IFFT to obtain the time domain

signal at the output of the lowpass filter.

i} Multiply the output of the lowpass filter point-

by-point with the input signal S(t) to obtain the

output signal 0(t).

Figures 6 through 8 show the waveforms at each of the
nodes of the system as would be seen by an oscilloscope
connected to these nodes. As has been demonstrated, it is
possible to solve a complex non-linear signa! processing

18 The Computer Journal

QUALITY SOFTWARE AT
REASONABLE PRICES

CP/M Software by
Poor Person Software
Poor Person’s Spooler $49.95

All the function of a hardware print buffer at a fraction of the
cost. Keyboard control. Spools and prints simultaneously.

Poor Person’s Spread Sheet $29.95

Flexible screen formats and BASIC-like language. Pre-
programmed applications include Real Estate Evaluation.

Poor Person’s Spelling Checker $29.95

Simple and fast! 33,000 word dictionary. Checks any CP/M

text file.
aMAZEing Game $29.95

Arcade action for CP/M! Evade goblins and collect treasure.

Crossword Game $39.95

Teach spelling and build vocabulary. Fun and challenging.

Mailing Label Printer $29.95
Select and print labels in many formats.
Window System $29.95

Application control of independent virtual screens.
All products require 56k CP/M 2.2 and are available on 8” IBM and 5"
Northstar formats, other 5 formats add $5 handling charge. California
residents include sales tax.
Poor Person Software
3721 Starr King Circle
Palo Alto, CA 94306
tel 415-493-3735

CP Mis areg:stered trademark of Digital Research

FREE SOFTWARE
RENT THE PUBLIC DOMAIN!

User Group Software isn't copyrighted, so there are no tees to
pay! 1000's ot CP/M and IBM software programs in .COM and
source code to copy yourself! Games, business, utilities! Afl
FREE!

CPI/M USERS GROUP LIBRARY
Volumes 1-92, 46 disks rental—$45

SIG/M USERS GROUP LIBRARY
Volumes 1-80, 46 disks rental—$45
Volumes 91-176, 44 disks rental—$50
SPECIAL! Rent all SIG/M volumes for $90

104 FORMATS AVAILABLE! SPECIFY.

IBM PC-SIG (PC-DOS) LIBRARY
Volumes 1-200, 5% " disks $200

Public Domain User Group Catalog Disk $5 pp. (CP/M only)
(payment in advance, please). Rental is for 7 days after receipt,
3 days grace to return. Use credit card, no disk deposit.
Shipping, handling & insurance—$7.50 per library.
{819) 9$14-0925 information,
(618) 727-1015 anytime order machine
Have your credit card ready! VISA, MasterCard, Am. Exp.

Public Domain Software Center
1533 Avohill Dr.
Vista, CA 92083

problem with the FFT, IFFT, and

: :) 8. 23E+62
a few simple time domain
operations. What makes this it

0.60E+82

analysis technique possible is the
8.50E+81

9 MIse2

speed with which these operations
can be performed. a

JIEHE

. 1
——

9.281+82

Bert P. van den Berg is president
of BV Engineering, whick

P a——

<]

Processing Program/ and PLOT-

i 0. 121+82

PRO (Scientific Graph Printing
Program/ software whick were

used to analyse the data and print

l
]
4
U
t
produces the SPP (Signal §
(]
A
d
l
the graphs used in this article. g

- N0

N

B
a
n
d
:
V s
§
0
u
t
|
u
t

These programs plus ACNAP JIL+E

(Electronic Circuit Analysing

- 428+0!

\
L
TR

Program) and DCNAP (DC Net-

work Analysis Program) are

NI

V

+
available from BV Engineering, 0. 001+00

2200 Business Way, Suite 207,
Riverside, CA 92501.

Note: Figures 7 and 8 can be found

-, 201+@2
8.301-62 G.60I-2 0.90E-2 9.2[-00 0.150-81

Tine (Seconds)

Figure 6: Input Signal S{t) and Bandpass Output

on page 22,

Tne Computer Jou~a 19

Letters From Our Readers

Dear Computer Journal:

I was intrigued by the listing on your “Author’'s Hot
Sheet” in the current issue. I'm not qualified to write such
an article, but I'm planning to build and instrument an
earth-sheltered house with a minimum of 8 of earth cover.
So your listing of soil temperatures at various depths over a
period of years really hit my funnybone. The solar heating
and light intensity were another pair of variables which I
intend to instrument, since I'll be piping in light through
large pipes from skylights at the surface.

Some other items you hit were pressure (strain on the
concrete dome) and liqui . level (water supply in large buried
tanks), not to mention the servos to control items such as
light supply, air handling, and various items around the
home.

The actual sensors and associated equipment aren’t going
to be my biggest problem (I'm an EE, but not really
proficient in digital techniques)~the processing and storage
of the data in the computer will be what I'll be looking
forward to in the magazine.

Hope you get a lot of takers on your appeal to authors.
Best of Luck.

L.S.
Arizona

Dear Lance Rose:

I recently bought some back issues of The Computer
Journgl, among which was Volume 1, Number 2, issued in
October of 1983.

I was very interested in your article on CP/M file
transfers and in Mr. Mosher’s contribution on floppy disk
formats. However, I'm afraid one statement of yours has me
confused. In your article it says that in return for $15 a
CP/M copy of the source files will be sent on an 8" single
density floppy. '

Have I missed something? How would you know what
format to send? Do you have the formats for all computers?
If it is not too much inconvenience I should be grateful for
an explanation. I am relatively new to the world of
computing and I am hoping to build a “Big Board” Z80
computer but this business of formats has got me spooked.

N.D.F.
Florida

Dear N.D.F.:

Let me try to clear up the confusion you mentioned in
your letter. You are correct in assuming that I would have
no way of knowing what type of floppy disk system you had.
The programs were offered on a 8" floppy since that was
the only format my system used at the time the article was
written. I might mention that in spite of the plethora of

514" formats, the 8" single density CP/M format remains a
standard for that size diskette.

Between the time that article was published and the
present, I have acquired a second system that can make a
variety of 54 " soft-sectored diskette formats. I you would
like the software on a minifloppy, let me know what format
you are using and I will send it to you for the same price.

Lance Rose
Technical Editor

Dear Neil Bungard:

I was just reading your article on interfacing the Sinclair
computers in “Interfacing Tips and Troubles” in issue
number 13. In that article you state the “the Sinclair
machines do not support memory mapped I/O—only
accumulator 1/0.” This statement is not true, in fact, I have
used the 8K to 16K block of memory which is not used by
the Sinclair ZX81 ROM to interface an EPROM programmer
and an IBM Selectric typewriter, for storing extended ROM
operating programs, and for a speech generator and sound
generator.

There have been numerous articles written in SYNTAX
magazine, SYNC magazine, and in others on using this area
for MMI/O In fact, because of the limitations in using AI/O
(ie: having to use machine code) this technique is the only
way I would interface to the Sinclair. All of my interfaces
use the peek and poke commands from BASIC to facilitate
the interface.

It is my understanding, however, that the TS2068, which I
do not own, may indeed only support Al/O.

The trick to using MMI/O in the ZX81 8K free block is to
make sure the “ROMCS” line on the Sinclair backplane is
raised high to disable the ROM's mirror image in that
memory range, when performing MMI/0.

L.E.D.
Michigan

Dear Computer Journal:

I recieved your subscription form through my father, who
is a High School Physics and Physical Science teacher. I am
a lab assistant for Advanced Computer Communications. I
have noticed that the older, popular magazines are getting
further away from hardware as time goes on. I want a
hardware experimentor, learner magazine.

Here is my one year subscription plus enough, I hope, to
cover all back issues through November. I realize it is a risk
but I think you are going in the right direction. Here is my
vote for the free enterprise system as well as its most basic
underpinings.

J.H.
California

20 The Computer Journal

BASE

A Series on How To Design and Write Your Own Database
By E.G. Brooner

Why File Design is Important

In the first article of this series we used a telephone
directory as example of how a database could be organized.
We decided that it would be desireable to “find” a complete
entry, or set of entries, by either the name, the address, the
phone number, or some other identifier such as the type of
business. When searching a list of names, too, it might be
desirable to isolate the first and last names to facilitate
alphabetical arrangements. Unfortunately, most directories
are not organized for this kind of elaborate searching, but if
we produced our own it could be. A typical printed directory
is “keyed” to the last name only and the rest has to fall into
place. This illustrates the basic difference between a
database program and a simple store-and-retrieve filing
application.

In a database (or any collection of data stored on a disk)
the organization must provide some hierarchy, or
framework into which the data is deposited. The most
general assembly of data is the database itself; the next
division is into (one or more) data files. Each file is further
divided into records and then into fields. A complete name
could be a field, or the first and last name could be separate
fields. The entire address can be one field, but for many
purposes it is best if the street and number, city, state, and
zip code each comprise a separate field.

The phone number is yet another field, and the type of
business or similar indicator of purpose would also be a
useful classification. Other data collections might contain
other classifications; a magazine subscription list, for
example, might contain an expiration date. These
considerations and more affect the structure of the database
and the way information is stored in and retrieved from it.
The ability to retrieve data in the order you choose is an
important characteristic of any collection of data.

Another database example, a very simple one, is a
checkbook. In this relatively simple collection of data you
might want to locate 8 certain line item by check number or
type of payment, or find those within a certain range of
dates, and in addition, do some simple addition and
subtraction along the way. In either case it would be
impractical to store entire records or transactions, because
each might be treated differently in the recovery or
manipulation process. In each checkbook entry, therefore,
the check number, date, item and amount all have to be
considered as separate entities which are related to one
another in some logical manner. Together they constitute a
record, one in which different items might be significant at
different times. We would call the significant item (date,

check number, or whatever, the key to that record, or its
key field.

For many purposes we only need one key field per record,
at least at any one time. A more flexible database will allow
us to specify several fields in each record as key fields -
perhaps all of them. With a checkbook so organized, then,
we could find all records (entries) that pertained to “rent”
and occured between two specified dates.

Once the file structure is assigned all information going
into it and coming out again has to rigidly conform to the
original limits. You might not always want phone numbers
as part of a name-and-address list but if they were not
originally provided for they cannot be added later, hence
you would probably allow a field for that information when
the file is being designed.

How a Database is “Different”

A completely inflexible storage system cannot properly be
called a data base. Almost every application program stores
data in some manner, and if there is a minimum of flexibility
in entering and retrieving the information, and in putting it
to use, it is more properly referred to by some name like
“file handler.” To earn the title of database your system
must let you specify, when the base is created, just what
fields will be permitted, what type of data each will contain
{numbers or text, for example) and how much information
can be entered. A name field that will accomodate only 10
text characters is not much use, nor is a phone number field
that has no room for the area code, or a zip code field that
cannot accomodate the new, longer numbers or the
Canadian zips that are mixed numbers and letters. By the
same reasoning, it would be senseless to make every field 50
characters long when some of them will only hold a zip code.

Commercial database software usually lets you establish
these parameters in a relatively simple manner such as from
a menu, rather than having to write a new program for each
new use. This emphasizes the main difference between a
simple file handler and a database. A file handling
application lets you do a limited number of things from the
package, and the file structure is pre-determined. A
database package lets you use the same program to perform
several different applications which you, the user, design as
need be. The effect is that the database program actually
writes a new application to your specifications, within its
inherent limits. It is a program that writes programs (or at
least the file handling portion, which is often the most
difficult part).

If you write your own software some similar arrangement
has to be made. One of the tasks in designing your own
database, then, is to anticipate the data structure and
provide for more-or-less painlessly changing it as your needs
change. In commercial software there is often some

arbitrary limit to the choices you have in such matters as
number and length of fields, completely aside from any
limitations your operating system might impose. By
designing your own system you can get around all of these
obstacles.

This brings up one of the reasons that our examples will
be in C-BASIC. There are BASICs which arbitrarily limit
the record length and file structure: one of these with which
I am familiar is the Microsoft BASIC used on the original
TRS-80 Model I. When dealing with random access files (the
only kind useful for data base use) it requires that each
record be 256 bytes in length. You do not have to use all of
that space, of course, but unused space is wasted and no one
record can exceed 256 bytes. Again, some BASICs (North
Star comes to mind) require that you reserve file space in
advance—if your file outgrows the reserved space you are
in real trouble. C-BASIC (and some others) lets you establish
records of any length and lets the file “grow™ as you add
more entries, until the entire disk is full.

Random Files Defined

Let's review the foregoing just briefly: a field can be
thought of as a box into which you can put a certain amount
of information, of a certain type, which will occupy a
specified relative position in some collection of related data.
All of the related fields such as those pertinent to a single
individual, or a single transaction, will usually be referred to
as a record. A number of similar records will usually (but
not always) make up one distinct file. Repeating the
heirarchy as we will use it here, then, from the particular to
the general, we will have fields, records, files, and
databases. The database will be the entire collection; the
file(s) will be collections of records, and the records will each
be a collection of fields. There should be a provision for
changing the file structure for a new application without re-
writing the entire program. If we are too repetitious about
this fact it is only because this concept of structure is so
basic to an understanding of database use and design. Let's
agree at this point that we will deal primarily with random
access files, those in which we can read or change any
record without slogging through and re-writing the entire
file. We'll occasionally make use of the other major file type,
sequential files, for some purposes. These files are easy to
handle if we want to simply store an array or a list of
numbers, all of which need to be read out at the same time
anyway. I'll pause here to repeat some advice I gave
earlier — familiarize yourself with the way your own system
generates, reads and writes data files before going any
further into the details. We will be especially interested in
creating and defining files within a program without re-
writing the program itself.

Start Thinking About

Your File Design Now
You might give some thought, too, to the data types that
you might want to handle. Some items will be text (string
variables) while others will be numbers. Some programmers
like to enter all information as text and let the program

Tre Computer Jourra 21

APROTEK 1900”" EPROM PROGRAMMER
e a— Ry
[] i L ¥ TECHNICAL E

.
- vy mm--

El a‘j On'y MEA:YNCH:OUGN s
$250.00 m\f

A SIMPLE, INEXPENSIVE SOLUTION TO PROGRAMMING EPROMS

The APROTEK 1000 car program 5 volt 25XX senes through 2564 27XXx
series through 27256 ard B88XX devices plus anvy CMOS versicns of the arr.
types included with each programmer s 3 persoraly ~nduie ¢! your (ho -
are only $10 00 ea when purchased with APROTEK 1000 Later oo
quire future modules at coely $15 00 ea . postane pad A.analle pe
modules PM2716 PM2732 PMZ732A PM2T764 PMITEIZ .
PM27256. PM2532 PM2564. PMEET64 unciudes 68766
modules by these numbers,
APROTEK 1000 comes compiete with a meny dnver BASIC drver prograrmmer
hsting which allows BREAD WRITE COPY. ang VER'FY wr C Lo
adaptec for use with IBM. Appie Kaypro. and other mucrocompuier
port Also inctuded 1s @ menu friven CPM assebly language arve st
{DART: and 8080 :82511 | O port exa~pies interface s a simpte 3 :
with a female DB 25 connector A handshake character 1s sen~t Dy he proagrame .-
after programming each byte. The mterface i1s swiltch seiectatie at tr B
6 baud rates 300. 1 2k, 2 4k 4 8k 9 6k 9~ 19 2k bauc Data ‘urrat ¢
ming s ‘absoiute code . n.e . it will oro?!am exacth, what 1t 15 sent g
EPROM adaress O' Other stardard downloading formats are easi, <onv
absolute tobject) code
The APROTEK 1000 is truly universal it comes standard at 117 VAC 5C &7 =Z
and may be internaily jumpered for 227 240 VAT 50 60 AZ FCC ventcator
(CLASS B has been obtaineda for the APROTEK 1000

APROTEK 1000 is covered by a 1 year parts and labor warranty.
N

FINALLY — A Simple, Inexpensive Solution To Erasing EPROMS
APROTEK-200™ EPROM ERASER APROTEK 300™ only $60.00
Simply nsert one or two EPROMS This eraser 1s dennca to APROTEK
and switch ON. In about 10 minutes 200™ but has a built N tmer s¢ tnat the
you switch OFF and are ready to ultraviolet famp autematically turms of* -
reprogram 10 minutes ehminating ary sk of cuersa
APROTEK-200™ onty $45.00.

posure damage 10 your EPROMS
APROTEK 300™ only $60 00

APROPOS TECHNOLOGY
1071-A Avenida Acaso. Camarillo, CA 83010
CALL OUR TOLL FREE ORDER LINES TODAY:
1-{800} 962-5800 USA or 1-{800) 962-3800 CALIFORNIA
TECHNICAL INFORMATION: 1-(805) 482-3604
Add Shipping Per tem $3.00 Cont. U S $6 00 CAN, Mexico. HI, AK. UPS Bice

convert it to numbers when necessary. This is because a
program that is expecting text will accept numbers but the
reverse is not true. For example, you could enter the
number “12345" as text and if you wanted later to perform
an arithmetical operation you would use the feature (found
in nearly all BASICs) to convert the text to its equivalent
numeric value. Things like this are a matter of programming
“style” and we all have our own preferences. At the very
least, pick something like names and addresses and try your
hand at designing a record —how many fields, how long each
is, and whether it is text or numeric. You might also give
some thought to the problem of inadvertently entering a
longer name than you left space for; this comes under the
heading of error-trapping, and a good program simply won't
let you make an illegal entry. Again, this is a matter of
programming style.

We’'ll cover the design of our databases’ files and records
and the entering of data as we go along. Perhaps the most
important part of the design, though, is that which permits
us to readily retrieve data after it has been entered. After
all, that is the main reason for having a database! Finding
data involves various means of sorting or ordering it, and
searching through the files to find a particular item or set of
items. That will be the subject of the next article in this
series and it is an interesting programming exercise for
those of us who enjoy that sometimes black art.

For now we can observe the opening module of the
program; this will serve to set the stage for the next
section, which is the creation of file structures. Actually,

22 The Computer Jourra

this first section does create a pair of blank files the first PRINT *2) ENTER DATA IN "jNAMES
s . PRYS " PRINT “3) MODIFY DATA IN “jNAMES - -
time the program runs. The first is "“BASES.DEF" and the PRINT ") SEARCH DATABASE)NAMES
4 " PRINT “S) SORT ANY FILE ON ANY FIELD"
second is "BASES.EXT." The program cannot be run unless PRINT "6) CHOOSE ANGTHER DATABASE "
. . PRINT "7) PRINT FORMATYER"
these files exist.
. . . PRINT
This action takes place between lines 1100 and 1150. If 1400 PRINT “CHODSE BY NUMBER® -
g . . N . INPUT CHOICEY
you are familiar with BASIC this portion is easy to follow, IF CHOICEZ <1 OR CMOICE% >7 THEN 1400
ON CHOICEY BGGTO 2000, 3000, 4000, S000, 6000, 7000, 8000 .

with the possible exception that C-BASIC needs line
numbers only for lines that will be referenced from
elsewhere in the program.

Once one or more data base files have been created, this
portion is skipped. In that case, the program reads the two Time-Frequency, continued from page 18
referenced files and prints, on the screen, the names of each
data collection and the number of records each contains.
How that information happens to be there will become
apparent later. In any event, the final action in this module
is the presentation of the main menu (line 1300) which §. 120 , — - §,380 2

:ables you to choose the various program functions listed ' ‘ —

a - . 1 [} R
\re: the perhaps str‘ange C-BASIC syntax will be » 04000 TO.Z3M2 ¢
cxplained in the next article, as we take up the more-or-less f g
automatic creation of data structures. For now we'll just i ; i
mention the rather unorthodox use of the “WHILE END" { ,‘ HSMZ{
loop that will show up in this program. It is used here as an : j ; -
endless loop, and the exit is in response to the previously o
executed “IF END” statement. 3 3
t t
? ‘ ?)
REM PROGRAM .BASE.CDH TO PERMIT AUTOMATIC J
REM CREATION/MANIFULATION OF MULTIPLE DATABASES I i J
REM EERERORTEBEIIERESENCINNSAINONNINSENNTETNTRTS _.ul’u _'m’u
REM BY E.G. BROONER VEKS 1.01 DEC 22 1983 .0+ 83008 '.‘gl'ﬂ(s ..’g;ﬂ 0.021-00 0.158-81 -
ine (Secon
REM EEEEIRTUEIRIINEETY
REM SOPENING MODULES
REM FIRICITBRIZNERETSE

Figure 7: Ampligier and Rectifier Outputs

DIM FIELD.NAMES (12),FIELD.LENGTHY (121, DATAS (12) ,FL%(12)
1000 GOSUB 9999 REM CLEAR SCREENES
PRINT “BASE, VERS 1.01 83/12/22"1PRINT
FOR X%=1 TO 12
FIELD.NAMES (XY)= "
DATAS (XY ="
FIELD, LENGTH (X%) =0
FL% (X%) =G
NEXT X%
IF END #17 THEN 1100
OPEN “"BASES.DEF" RECL 10 AS 17 0.10044) 8.600
OPEN “BASES.EXT" RECL 5 AS 18 ;
6070 1130

1100 PRINT “NO DATA BASES CURRENTLY ACTIVE. WHEN MAIN MENU APPEARS. "
PRINT" YOU MUST CHOOSE THE 'CREATE' OPTION BEFORE PROCEEDING" 0.330

FOR X%=1 10 1000 :
NEXT X%

REM BEGIN FILE OF DATABASE NAMES IF NONE EX1ST
CREAYE *BASES.DEF" RECL 10 AS 17
CREATE "BASES.EXT"” RECL S5 AS 18
PRINT #1830
B8CTO 1300

0.2108

1150 IF END #17 THEN 1200 0.9+
WHILE RECORDSY.=€X1STZ !
READ 817} BNAMES
IF BNAMES="" THEN 1190
PRINT "DATABASE ")
PRINT BNAMES; " - ")

$
'
s
t
e
]
0
"
t
?
v
t

FILESa“B"+DNAME® +~ EXT" -, 3L
OPEN FILES RECL & AS 14
READ #16,1; NBR.RECSY.
PRINT TAB(20); NBR.RECSX;* -"j* RECORDS" .
cLose 16 S ‘ - 1512
1200 iy SR 0 LR DNER MLk ISR
PRINT “ENTER NAME OF BASE EXACTLY AS IT APPEARS™ Tine (Seconds)

INPUT NAMES
PRINT
REM VERIFY THAT FILES EXIST
IF END €17 THEN 1230
FOR XXe=1 TO 3100
READ #17,X%; BNAMES
IF BNAMES=NAMES THEN 1300

Figurs 8: Lowpass and System Qutput [0(1)]

NEXT XX

1280 PRINT"NAME DOES NOT MATCH ANY EXISTING DATABASE“
PRINT
80TC 1150

1300 B0BUB 9999 REM CLEAR THE SCREEN
PRINT "1) CREATE OR DELETE A DATABASE "~

Tre Computer Jourma 23

Books of Interest

The Free Software Catalog and Directory
by Robert A. Froehlich

Published by Crown Publishers, Inc.

One Park Avenue

New York, NY 10016

475 pages, 82" x 117, softcover, $9.95

One of the advantages of using the CP/M system is the
vast amount of public domain software which is available.
Much of the new work is being done on sixteen bit systems,
but eight bit CP/M still runs on more computers and types
of computers from more manufacturers than any other
operating system. Even many of the computers which were
not intended to run CP/M can use this system with
additional software and/or a Z-80 card. This book contains
sources for the software and hardware to adapt the
following computers to run CP/M: Atari: Apple; Commodore;
Digital Equipment DEC, BAX, PDP1l1, ECLIPSE, and
NOVA; IBM-PC and PC Jr.; Radio Shack TRS-80 models II,
I11, 4, 12, and 16; and the Hewlett Packard 85.

The book is primarily a catalog of the CPMUG and SIG/M
libraries, but the authors have also added some very useful
information which will help the beginner use the programs,

What Would YOU Like to
See in a Database Program?

Most database programs are designed for
business use, and do not meet our readers’ needs
for scientific and experimental data handling.

We are publishing a series on writing your
own database program for applications where
the available commercial programs are not
suitable. We need your comments on features
that you feel should be included. This program
will be placed in the public domain for use by the
scientific and engineering communities.

Tell us what features you would like to see
in order to accomplish tasks which are difficult
or impossible with the business-oriented
programs.

including indexes cataloged by key word, language, author,
and file name. The CPMUG disks are available in 8” format
for $10; Northstar, Epson QX-10, Apple, and Kapro II disks
are $15. The SIG/M disks are $6 for 8", and other formats
are available. Remember that these programs must be run
on a computer which uses the CP/M operating system.

The variety of programs available in these libraries is
fantastic —there are games, utilities, finances, mathematics,
languages and & lot more in many different languages. I
found sixteen disks I need the first time I looked through
the catalog, and I'm sure I'll find more next time.
Alternatives to ordering the individual disks are to rent the
entire library from National Public Domain Software
Center, download the programs from a bulletin board, or
copy them at a regional user’'s group library. In these cases
you can save a lot of time by using this book to decide
beforehand which programs you want.

Most of the programs will be useable as is, but even the
ones which need minor modifications will serve as a good
starting point and save you the work of reinventing the
wheel. This book is recommended for all CP/M programmers
and hackers. a

3.5” DRIVES

WHY GO 35" 7 THEY ARE SMALL, FAST, LIGHT, LOW POWER,
COMPATIBLE WITHS 25" DRIVES (ON THE SAME CABLE), AND THE
DISKS AND DRIVES ARE MORE RUGGED AND RELIABLE MITSUBISHI
F THF
COMPATIBLE wiTH IBM PC, PC COMPATIBLES, RADIO SHACK, or ANY
YSTEM NOW USING ST ARD T 1 1yP . v

OMF 351 SS 360K w/manual connectors disk $215

DOMF353 DS 720K w/manual connectors disk avail soon
OCase and Power supply (built in spike protection] avail soon
QCable (two dnve nbbon cable) £1S

FREE SHIPPING. QTY DISCOUNTS, CA RESIDENTS 63tax
TBCHNICAL QUESTIONS WELCOMED!

MANZANA
935 Camino Del Sur
_‘ Isla Vista. CA 93117

CHECK. MO . VISA M.C
1-805-968-1387

24 Tnhe Computer Journal

Interfacing Tips and Troubles
A Column by Neil Bungard

Last month in Interfacing Tips and Troubles we line one of the BASIC program should be: 1 CLEAR 32129.

presented part one of a two part article on interfacing the This command reserves space above the BASIC routines.
Sinclair computers. In part one we looked at the hardware Address locations 32130D through 32138D will contain the
required for a simple interface, and explained how to protect machine language output routine. Locations 32139D through
memory space for storing machine language programs. This 32146D will contain the machine language input routine, and
month in part two, we will present the software required to locations 32147 and 32148D will be used to pass values from
complete the interfaciing task. The minimum software the BASIC programs to the machine language routines and
required to accomplish an input or an output is shown in vice versa.
Figure 1. In the following sections, 1 will discuss the
software in functional blocks and explain how each block is Loading the
used to accomplish the interfacing task. Remember from last Machine Language Routines
month that all information in brackets [] refer to the Referring to Figure 1, lines 5 through 70 of the BASIC
Spectrum and the TS2068 computers. program are used to automatically POKE machine language
instructions into the space reserved by the REM statement.
Reserving Space Line 10 sets the beginning storage location to 16514D
For the Machine Language Routines [32130D). Line 20 inputs a machine instruction which is

When using the TS1000 and the TS1600, line one of the entered through the keyboard. Note that the machine
BASIC program should be: 1 REM 123456789012345678. instructions must be in hexadecimal format. Line 30 checks

This command reserves 18 locations of protected RAM to see if the character which was entered was an “S,” and if
memory for storing the machine language routines. The first S0, program execution stops. If not, line 40 converts the
eight characters following the REM statement (1 through 8) instruction to decimal format and POKES it in the
occupy addresses 16614D through 16621D which will be used appropiate memory location. Line 50 increments the
to store the machine language output routine. The second machine language storage location and the entry process is
~ eight characters (9 through 6) occupy addresses 16522D repeated. You may be wondering why we enter the machine
through 16528D which will be used to store the machine instructions in hex format since they are converted to

language input routine. The last two characters (7 and 8) decimal in line 40 before they are POKED into memory. The
occupy addresses 18530D and 16531D which will be used to reason is that if we use the hex format, the instructions can

pass values from the BASIC programs to the machine conveniently be represented with two characters. Also, hex

language programs and vice versa. For the color computers, is the format that is most used by companies and authors

that provide listings of machine language instructions. To

BASIC ROUTINES execute the machine language entry program, type the

o) REM 12343¢789812343678 command “RUN 5" and press the ENTER key. Once the

S REM THIS 1S THE MACHINE L ENTRY ROUTINE program is running, input the following hex values: 06, 40,

18 LET x=16S14 OE, 92, 0A, D3, 00, 06, 40, OE, 93, DB, 01, 02, C9. These are
{18 LET x=32:138) . .

29 inPUT A the machine language values shown in Figure 1. Note: Do

§ E%Q:E;Eo&‘oz s scope e (2) 67 not enter the commas, and be sure to press the ENTER key

se 010 20 between each instruction. When the last instruction has

been input, enter an “S" to cease program execution.
196 REM TMIS I8 THE BASIC OUTPUT ROUTINE
118 CLS

120 PRINT “INPUT A VALUE BETWEEN # AND 2846 AND PRESS THE ENTER KEY™
136 INPUT X MACHINE LANGUAGE ROUTINES
146 POKE X, 16530
(148 POKE X,32147) output routine: $& 48 LD B, 48 (86 70 LD 3,70}
156 LET AeUBR 16514 ®€ 92 LD C,92
{150 LET A=UBR 32138) P LD A, (BC)
168 8OTO 119 D3 #8 OUT #e,A
176 STOP ce RETY
200 REM THIS IS THE BASIC INPUT ROUTINE input routine: 66 46 LD B, 48 (86 7D LD B,7D]
218 1.8 : ®€ 93 LD C,93
220 PRINT “PRESS ENTER TO INPUT A VALUE FROM THE INTERFACE" DB 01 IN A,01
230 INPUT X 02 LD (BC),A
co RET

248 LET A=USR 16322
{240 LET A=USR 32139)
230 A=PEEK (146331} Note: use the coamands
(236 A=PEEK (32148)) computers.

268 PRINT A

278 80T0 229

288 sTOP Figure 1

1n brackets [3 with the Spectrus and 752068

Outputting To the Latch

Lines 100 through 170 of the BASIC program work with
the machine language output routine to write data to the
eight bit latch in Figure 2 (reprinted from part 1). Line 120
asks for a value between 0 and 255D to be input through the
keyboard. (255 is the limit because it is the largest decimal
vaiue which can be represented with ¥ bits.) Line 130 inputs
the value and line 140 temporarily stores it in a RAM
memory location where it will later be retrieved by the
machine language output routine. Line 150 may look
strange, but it is the command which actually calls the
machine language output routine. Branching to the machine
language output routine, LD B,40 [LD B,7D] and LD C,92 set

The Computer Journa 28

the BC register pair to point to the RAM memory location
just filled by line 40 of the BASIC program (4092 hex is
16530 decimal) [7TD92 hex is 32147 decimal]. LD A,(BC) moves
the value which is in location 16530D [32147D)] into the Z80's
accumulator. OUT 00,A sends this value, which was input
through the keyboard, to the latch in Figure 2. RET returns
program execution back to the BASIC program where the
entire process is repeated. To execute this program, type the
command “RUN 100" and press the ENTER key. Follow the in-
structions given on the screen. Once a value has been entered,
it should be present on the output pins of the latch in Figure 2.
This can be verified by checking the output of the latch
(pins 2, 5, 6, 9, 12, 15, 16, and 19 on IC3) with a logic probe.

7415373

TRI-
STATE

From DEVICE

Intertace

Clrcult

7415373

LATCH

Pin Pin Pin
Assignments Assignments Assignments
for for for

Spectrum

752068 TS1000

and

To

TS1500

Intertace

Circuit

741504

00

v v
48 3B)

7,88 6,78)

128 nse)

3
7415138
01 2

ns 108)

02

o8 98)

03

Te
Additional 04
Lalches 05
06
o7

5

To
Additionat
Tristate devices

741500

741532

Figure 2

26 The Computer Journal

!
|

T

\

LR \\\\\\\\\

POWER THAT GOES ANYWHERE!

Single Board Computer

T

FAST — 6MHz 2808 CPU

POWERFUL — B4K to 256K RAM. 2K to 64K ROM
— 54" and 8" Floppy Controtler. SAS!
— 2 RS-232. Centronics Port

FLEXIBLE 50-pin 1/O Expansion Bus.
SMALL — 5%" x 10"

T)-.w?ﬂg-:

DAVIDGE CORPORATION
292 East Highway 246
PO. Box 1869

Buellton. CA 93427

*280 15 a registered trademark of 2itlog

(805) 688-9598

Interfacing Workshop
To Be Held

The Virginia Polytechnic Institute in
Blacksburg will hold their popular
interfacing workshop in the spring of 1985.
The workshop, on “Personal Computer and
STD Computer Interfacing for Scientific
Instument Automation,” will be directed by
Mr. David E. Larsen and Dr. Paul E. Field.
The three-day workshop will be held twice,
March 14 through 16, and May 30, 31, and
June 1, 1985. It will be held at the Virginia
Polytechnic Institute in Blacksburg. The
cost is $450.00.

This is a hands-on workshop, with each
participant wiring and testing interfaces.
For more information, call or write Dr.
Linda Leffel, C.E.C., VA Tech, Blacksburg,
VA, 24061, (703) 961-4848.

L

Inputting From the Tristate Device

Lines 200 through 280 of the BASIC program work with
the machine language input routine to read data from the
eight bit tristate device in Figure 2. Line 220 informs the
user that he/she will be inputting a value from the interface.
Line 230 initiates the inputting and line 240 branches
program execution to the machine language input routine.
Branching to that routine, LD B,40 [LD B,7D] and LD C,83
are set to point to the RAM memory location where the
- value from the tristate device will temporarily be stored.
Note: 4093H [7D93H] is 16631D {32148D]. IN A,01 inputs the
tristate value. LD (BC),A stores the value in memory, and
RET returns program execution to line 250 of the BASIC
program. Line 260 assigns the variable “A” to the value just
input from the tristate device, and line 260 prints that value
to the screen. This program and the output program above
will continue to cycle until a break is encountered. To
execute the inputting routine, type the command “RUN 200"
and press the ENTER key. Again follow the instructions
given on the screen. Each time the ENTER key is pressed, a
new value from the tristate device will be printed on the
screen. This can be verified by grounding various inputs on
the tristate device (pins 3, 4, 7, 8, 13, 14, 17 and 18 on IC2)
and observing the changing values printed on the screen.

Conclusion
So there you have it; the hardware, the software, and the
list of oddities required to get you started in interfacing

your Sinclair computer. The hardware and the software
presented in this article cover the basics, and with this
information you should be able to add the level of
sophistication required to accomplish any interfacing task.
Bryan, I realize that I did not answer your question about
the VIC-20 EPROM programmer directly, but by using the
techniques presented in this article, I think that you can
modify the EPROM programmer to be used with your
Sinclair color computer. Good luck, and if you have
additional questions, drop us a line here at The Computer
Journal We will be glad to help. .

listing 2, continued from page 10

1632 DISP JSR COUT Display

14640 RTS

1650 STORE LDA TEMP Retrieve character

1660 LDY #so0

1679 STA (PTR),Y Save character in buffer
1680 LDA TEMP

1690 CHP asEe Lowercase”™

1780 BCC CHARTN No-display on screen
1718 SEC

1728 SBC #s26 Convert to upper case
1730 CHARTN JSR COUT Print to screen

1740 INC PTR Incresent buéfer counter
1758 LDA PTR

1760 BNE SKIP

177¢ INC PTR+}

1786 SKIP LDA PTR+1

179¢ CMP 0890 Buffer ¢full”

1862 BCS FuLL Yes—print warning

1810 RTS Done

The Computer Jour~a 27

The Bookshelf

Soul of CP/M: Using and Modifying CP/M’s Internal
Features

Teaches you how to modify BIOS, use CP/M system calls in your own programs. and
more! Excellent for those who have read CP/M Primer or who otherwise understand
CP/M's outer-layer utilities. By Mitchell Waite. Approximately 180pages, 8x9Y:, comb.
B8B83 $18.95

The Programmer's CP/M Handbook

An exhaustive coverage of CP M 80° | its internal structure and major components is
presented. Written for the programmer. this volume includes subroutine examples for
each of the CP M system calls and information on how to customize (P'M — complete with
detailed source codes for all examples. A dozen utility programs are shown with heavily
annotated C-language source codes An invaluable and comprehensive tool for the serious

programmer. By Andy Johnson Laird. 750 pages. 7':x9%, softbound. .. $21.95

Interfacing to S-100 (IEEE 696) Microcomputers

This book is a must if you want to design a custom interface between an S 100
microcomputer and almost any type of peripheral device. Mechanical and electrical design
is covered. along with logical and electrical relationships. bus intercennections and more.
By Sol Libes and Mark Garetz, 322 pages, 6':x9', softbound.

Microprocessors for Measurement and Control

You'll learn to design mechanical and process equipment using microprocessor-based
“real time” computer systems. This book presents plans for prototype systems which
allow even those unfamiliar with machine or assembly language to initiate projects. By
D.M. Auslander and P. Sagues. 310 pages, 7 3/8x9 14, softbound. $16.95

Understanding Digital Logic Circuits

A working handbook for service technicians and others who need to know more about
digital electronics in radio. television, audio. or reiated areas of electronic troubleshooting
and repair. You're given an overview of the anatomy of digitallogic diagrams and
introduced to the many commercial IC packages on the market. By Robert G. Middleton,
392 pages. 51 x8', softbound. $18.95.

Real Time Programming: Neglected Topics

This book presents an original approach to the terms. skills, and standard hardware
devices needed to connect a computer to numerous peripheral devices. It distills technical
knowledge used by hobbyists and computer scientists alike to useable, comprehensible
methods. It explains such computer and electronics concepts as simple and hierarchical
interrupts. ports. PIAs. timers. converters, the sampling theorem. digital filters, closed
loop control systems. muitiplexing, buses, communication, and distributed computer
systems. By Caxton C. Foster. 190 pages. 6% x9'%. softbound. $9.95

Interfacing Microcomputers to the Real World

Here is a complete guide for using a microcomputer to computerize the home, office. or
laboratory. It shows how to design and build the interfaces necessary 1o connect a
microcomputer to real-worid devices. With this book. microcomputers can be programmed
to provide fast, accurate monitoring and controi of virtually all electronic functions - from
controiling houselights. thermostats, sensors, and switches, lo operating motors,
keyboards. and displays. This book is based on both the hardware and software principles
of Lthe Z8U microprocessor (found in several minicomputers. Tandy Corporation’'s famous

TRS-80, and others). By Murray Sargent 111 and Richard Shoemaker, 288 pages, 6'ax9'u,
softbound. . .

Mastering CP/M

Now you can use CP/M to do more than Just copy files. For CP:M users or systems
programmers — this book takes up where our CP'M handbook leaves off. It will give you
an in-depth understanding of the CP'M modules such as, CCP (Console Command
Processor). BIOS tBasic Input/Gutput System', and BDOS (Basic Disk Operating System).
Find out how to: incorporate additional peripherals with your system. use console 1'0. use
the file control block and much more. This book includes a specal feature —a library of
useful macros. A comprehensive set of appendices is included as a practical reference tool.
Take advantage of the versatility of your operating system! By Alan R. Miller. 398 pages.
6°x9°, softbound $16.95

FORTH Tools, Volume One

FORTH Tools is a comprehensive introduction to the new international FORTH 83
Standard and all its extensions. [t gives careful treatment to the CREATE.DOES
construct. which is used to extend the language through new classes of intelligent data
structures. FORTH Tools gives the reader an in-depth view of input and output. from
reading the input stream to writing a simple mailing list program. Each topic is presented
with practical examples and numerous illustrations. Problems (and solutions) are provided
at the end of each chapter. FORTH Tools is the required textbook for the UCLA and IC
Berkeley extension courses on FORTH. By Anita Anderson and Martin Tracy. 218 pages.
54 x8'%, softbound

TTL Cookbook

Popular Sams author Dan Lancaster gives you a complete look at TTL logi¢ circuits. the
most inexpensive, most widely applicable form of electronic logic. In no-nonsense
language, he speils out just what TTL is, how it works, and how you can use it. Many
practical TTL applications are examined luding digital 3. slectronic
stopwatches, digital voltmeters. and digital tachometers. By Don Lancaster. 336 pages.
§'4x8'%, soft. ©1974

The Computer Journal ay e Price Tou
PO Box 1697 Kalispell, MT 59903
Order Date
Print Name
Address
City State Zip
- . Shipping charges are: $1.00 for the first Book T
ZCheck - o ofal
Cnec Mastercarg Visa book. and $.50 for all subsequent books. »
Card No. Expires Please allow 4 weeks for delivery. Shipping
Signature for Charge TOTAL

Searching for Useful Information?

The Computer Journal is for those who interface, build, and apply micros. No
other magazine gives you the fact filled, how-to, technical articles that you need to
use micros for real world applications. Here is a list of recent articles.

Volume 1, Number 1:

e The R5-232-(‘°‘$erlal Interface,
Part One 9

» Teleco %l @ with the Apple]:

Inary Flles

e Beginfers Cofumn, Part One:
Getting Started

¢ Buiid an “Epram”

Volume 1, Number 2:
e File Transfer Programs for CP/M
e The RS-232-C Serial Interfacs,

Part Two
e Bulld a_Hard Print Spooler,
Part One: Ba d and Design
* A Revi oppy Disk Formats
s Send orse Code With an

Apgle][,
e Beginner's Column, Part Two:
Basic Concepts and Formulas in
Electronics

Volume 1, Number 3;
e Add an 8087 Math Chip to Your
Dual Processor Jbard
e Bulld an onverter for the

Apxle

¢ AS rence Chart

* Mo s for Micros

¢ The CP/M OperatlanSystem

e Bulld a Hardware Print Spooler,

Part Two: Construction

Volume 1, Number 4:

e Optoelectronics, Part One:
Detectlng Generating, and Using
Light in Electronics

e Multi-user: An Introduction

e Making the CP/M User Function
More Useful

e Build a Hardware Print Spooler,
Part Three: Enhancements

¢ Beginner's Column, Part Three:
Power Supply Design

Volume 2, Number 1:

¢ Optoelectronics, Part Two:
Practical Applications

e Multi-user: Muiti-Processor
Systems

* True RMS Measurements

e Gemini-10X: _ Modlfications to
Allow both Serial and Paraliel
Operation

Volume 2, Number 2:
e Build a High Resolution S-100
Graphics Board, Part One: Video

Digplalys
o Sysfem Integratiog, Part One:
Selecting System onents

* Optoelec \ art Three:
Flbee Opt %n@

e ControlMg DC Motors
¢ Multi-User: Local Area Networks
e DC Motor Applications

Volume 2, Number 3:

* Heurlsfic Search in Hi-Q

e Build a High-Resolution S-100
Graphics Board, Part Two: Theory
of Operation .

e Multi-user: Etherseries

s System integration, Part Two:
Disk Controllers and CP/M 2.2
System Generation

Volume 2, Number 4:

s Build a VIC-20
Programmer

o Multi-user: CP/Net

e Bulid a High-Resolution S-100
Graphics Board, Part Three:
Construction

° S&stem Iintegration, Part Three:
CP/M 3.0

EPROM

¢ Linear Optimization with Micros
e LSTTL Reference Chart

Volume 2, Number 5:

» Threaded Interpretive Language
Part One: Introduction an
Elementary Routines

¢ |ntertacing Tips and Troubles: DC
to DC Converters

¢ Muitl-user: C-NET)

¢ Reading PCDOS Diskettes with
the Morrow Micro Decision

¢ LSTTL Reference Chart

e DOS Wars

* Build a Code Photoreader

Volume 2, Number 6:

e The FORTH Language: A
Learner’'s Perspective

e An Affordable Graphics Tablet
for the Apfle |

¢ Interfacing Tips and Troubles:
Noigse Problems, Part One

e LSTTL Reference Chart)
e Multi-user: Some Generic
Components and Techniques

¢ Write Your Own Threaded
Language, Part Two: Input-Output
Routines and Dictionary

Management
s Make a Simple TTL Logic Tester

Volume 2, Number 7:

s Putting the CP/M I0BYTE To
Work

* Write Your _Own Threaded
Language, Part Three: Secondary
Words

s |nterfacing Tips and Troubles:
Noise Problems, Part Two

¢ Build a 68008 CPU Board For the
S-100 Bus

¢ Writing and Evaluating
Documentation
e Electronic Dial Indicator: A

Reader Design Project

Volume 2, Number 8:)

e Tricks of the Trade: Installing
New /O Drivers in a BIOS

* Write Your Own Threaded
Language, Part Four: Conclusion

¢ interfacing Tips and Troubles:
Noise Problems, Part Three

¢ Multi-user: Cables and Topology
¢ LSTTL Reference Chart

Volume 2, Number 9:)

o Controfling the Apple Disk]
Stepper Motor _

. Interfacmﬁ“ Tips and_Troubles:
Interfacing the Sinclair Computers,
Part One

* RPM vs ZCPR: A Comparison of
Two CP/M Enhancements

¢ AC Circuit Anaysis on a Micro

e BASE: Part One in a Series on
How to Design and Write Your Own
Database .

¢ Understanding Séstem Design:
CPU, Memory, and I/

The listing above includes only the major articles in each issue. The Computer
Journal also contains regular features such as ‘‘New Products,” ‘“Books of
Interest,” “The Bookshelf,” and *‘Classified.”

Back issues: $3.25 in the U.S. and Canada, $5.50 in other countries (air mail postage inciuded.) Send payment with your
complete name and address to The Computer Journal, PO Box 1697, Kalispell, MT 58903. Aliow 3 to 4 weeks for delivery.

