THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

Vol. It Mo. 3 : $2.50 US

Heuristic Search in Hi-Q.:

Build a High-Resolution S-100
Graphics Board

Part Two: Theory of Operationeae

Multi-user:
Etherseriesoae

System Integration
Part Two: Disk Controllers and CP/M 2.2

System Generationeae»
New Productsx»

The Computerist’s Calendar .z

The Computer Journa 1

Editor’s Page

The End of the “Programmer Prima Donna”

The computer software market is changing rapidly
now that more computers are being used in offices
and homes by non-computerists. Until recently most
of the microcomputers were used by people
interested in computers. These knowledgeable users
were willing to make do with awkward programs or
rewrite them, but the market is changing and has
now reached a point where programs will have to be
designed for the end user in order to be successful.

When microcomputers first became popular, only
programmers knew enough about these marvelous
new devices to foresee what they could do. These
pioneering individuals wrote business programs, and
we were amazed at the power available in word
processors, data bases, and other useful programs.
These early business programs were the primary
reason for the rapid expansion of micro sales.

Unfortunately, the programmers (who were the
only ones to understand the micro) did not
understand the requirements of a business system.
The result was that hundreds of programs were
developed which were difficult to use, and which
almost did the job. The programmers worked in
isolation and produced elaborate programs which sold
because they were so much better than working
without a computer.

The programmers were “high priests” who decided
what the customers should use, and the customers
did not have enough experience with computers to
intelligently evaluate the offerings. The programmers
also lost sight of who their users were, and were not
really interested in understanding their needs. The
software industry talks about alpha and beta testing
of programs, but this testing was (and perhaps still is)
done by experienced computerists. The testing should
really be done by the lowest level of people expected
to use the program. If you are selling a program
which will be purchased and used by other
programmers it should be tested by programmers. If
the program will be used by people on the street, it
should be tested by people on the street. It took a
long time for other industries to realize that they had
to identify their market, really visualize the
individuals expected to lay their cash on the counter
and put the product to use, and then spend enough

time in the users’ environment to understand what
they did in a typical work day. If you want to test a
program for real estate offices, you should load the
program and a computer into your car, and drive
around until you find an office whose personnel
represent the least knowledgeable segment of your
market. Offer them whatever cash it takes to have
them try your program using the computer you
supply, give them the documentation, and then sit in
the corner and watch what happens. If they have to
ask you a question, or you have to point out
something they are doing wrong, the experiment has
failed and you had better go back and make revisions.
You may also find that while the program is easy to
understand and put to use, it just may not perform
the required functions.

The problem of non-performing software became
very evident to us while we were searching for a data
base for use on our new CP/M machine. We had been
using The General Manager by Sierra On-Line on our
Apple® , and were quite satisfied with it, but we are
changing to a S-100 system and need a simple data
base. So far the offerings we have seen for CP/M are
expensive, hard to use, and are incapable of handling
our mail list needs. We also reviewed some mail list

programs, but they failed to handie our needs for 3rd
continued on page 25

Editor/Publisher................... Art Carlson

Joan Thompson
Technical Editor................... Lance Rose
Technical Editor. Phil Wells
Production Assistant Judie Overbeek
Contributing Editor Ernie Brooner

The Computer Journal® is published 12 times
a year. Annual subscription is $24 in the U.S,

$30 in Canada, and $39 in other countries.

Entire contents copyright © 1984 by The
Computer Journal

Postmaster: Send address changes to: The
Computer Journal, P.O. Box 1697, Kalispell MT
59908-1697.

Address all editorial, advertising and
subscription inquires to: The Computer Journal
P.O. Box 1697, Kalispell, MT 59903-1697.

2 The Computer Journa:

HEURISTIC SEARCH IN HI-Q

by Henry W. Davis

Computer Science Department
Wright State University, Dayton, Ohio

Computer games challenge humans to be smart. Have
you ever wanted to reverse the role? This article is about
how to write a program which makes the computer appear
as smart as a human, or smarter! It also demonstrates a
technique called “heuristic search,” an important component
in many artificial intelligence systems.

Our medium is “hi-Q,” a popular puzzle played in a certain
chain of restaurants by customers who are waiting for their
food. When I first encountered hi-Q, I was so intrigued that I
decided to share it with my students in an artificial
intelligence course at Wright State University. The course
includes heuristic search algorithms. On twe occasions, I
asked students to try these algorithms on hi-Q. They used a
wide variety of languages and computers, from BASIC,
FORTRAN, and PASCAL on home computers to
SIMSCRIPT on a CYBER. They obtained a number of
fascinating results showing that heuristic programs can do
quite well at hi-Q, considerably better than most humans.

In this article, I will describe the basic algorithm used
along with specifics of the hi-Q environment. Then I would
like to share with you some aspects of a particularly nice
program written by Ed Dudzinski, a former masters degree
student in computer science at Wright State. Ed currently
works on software optimization for array processors at the
Wright-Patterson Air Force Base in Dayton, Ohio. His
program, written in FORTRAN, is interesting because it
performs well while demanding little memory—less than
40,000 bytes in a home computing environment.
Nevertheless it has analyzed game situations involving as
many as 190,000 different board configurations.

Our results are only a beginning. It is still not clear what
the best computer hi-Q strategy is, even for the simplest hi-
Q version described below.

The Rules of Hi-Q

A common version of hi-Q has 21 holes drilled into a piece
of wood. Figure 1 shows the pattern: there is assumed to be
one hole in the center of each of the numbered squares. The
puzzle begins with pegs in 20 of the holes. The goal is to
“jump and remove” 19 of these pegs, ending with only one
peg on the board. The rules are as follows:
1) A peg can be moved only by jumping and thereby
removing a single adjacent peg.
2) A peg can jump either horizontally (eg., from hole 5 to
hole 7), vertically (eg., hole 17 to 7), or diagonally (eg., hole 7
to hole 15).
3) The jump can be made only if the destination is empty
(eg., hole 7 in a 5t0-7 jump) and the jumped hole (hole 6) is
full; the jumped peg is removed.
Figure 2 shows the first three moves of a typical game. This

game was initialized by
arbitrarily choosing
4151678 hole 6 to be empty. The
game is easily plaved

9110|111 {12113 and studied by simply
14tistisli7118 drawing a big version
of Figure 1 (without

19120{ 21 the numbers! and using
pennies instead of pegs.
In fact, for this reason
it is sometimes called
the “20-penny puzzle.”
The wversion just
described will stump
most people for quite
a while. Try it! For the
very ambitious there

11213

Figure 1: Hi-Q is played on a board
with positions patterned as shown
above. In the center of each num-
bered square is a hole for a single
peg. Initially 20 pegs are placed
randomly into the holes. The pegs
may jump one another harizontally.
vertically or diagonally as long as

are harder versions
they land Iin a vacant location coming up.
Jumped pegs are removed from the
board and the goal is to remove all The Basic
out one peg Algorithm

The basic hi-Q search
algorithm is a variation of Nils Nilsson's “ordered search
algorithm” which may be found in Chapter 3 of his 1971
book Problem solving Methods in Artificial Intelligence. This
is also the “graphsearch procedure in Chapter 2 of his 1981
book Principles of Artificial Intelligence. It is shown in
Figure 4 and explained below.

The many possible configurations of the hi-Q board are
called states. The states are connected by arrows, or
directed arcs, which represent legal moves transforming one
state into another. The result is a directed graph, called the
state space. Figure 3 shows a very small portion of the state
space for the hi-Q puzzle whose initial state is Figure 2a.

00 0 [0 0 o o o
©c0c o0 o0 oooool o0 0o
o 0 o 0 o 0 o { 000;
o o o o oo o o 0 0 0
o
0 0 0 oooj'~ 0 0 9f
a b ¢ d

Figure 2: A typical initial state for hi-Q is shown in Figure 2a. Any
square could be left empty, but in this case it's square number 6
(using the numbering scheme of Figure 1). Figures 2b. 2c, and
2d show the results of typical first, second and third moves. For
example, in the third move, the peg at 1 jumps the peg at 6 and
lands in location 12.

The Computer Journai

ooooo
oo oo
o of

L

Figure 3: A very small portion of the '‘state space'’ of a hi-Q
puzzle is shown. The different board configurations are called
states, or nodes. Arrows indicate legal moves from one state to
another. The whole construct of states and tegal moves forms a
directed graph, called the state space.

Compute f (START), store it with START, and insert START into Oper:
CURRENT€—NULL; FOUND<—"FALSE’
DO UNTIL OPEN is empty or FOUND = 'TRUE’
™ CURRENT&— node on OPEN with least f value
(resolve ties lexically)
Insent CURRENT into CLOSED and delete it from OPEN
Generate all successors to CURRENT
IF some successor is a goal THEN
Report solution {using search tree)
| FOUND €—~TRUE'
LSE
[For each successor M of CURRENT DO
If M is not on OPEN or CLOSED THEN
Compute f(M) and store it with M
Direct a *'parent pointer’ from M to CURRENT
(for search tree)
tnsert M into Open

m

| L

IF FOUND = 'FALSE' THEN report failure.

Figure 4: The basic hi-Q search aigorithm starts by putting the
initial puzzle configuration on the OPEN list. In the main iteration a
node is removed from OPEN and its successors are generated by
applying all iegal moves. [f a goa! (only one peg left) is not found.
then those successors not previously seen are added to OPEN. If a
goal is found, then search tree pointers enable the program to
report the route it discovered.

The algorithm “knows” the legal moves and takes as input
an initial state. It performs all legal moves on the initial
state, generating new states. The legal moves are then
performed on some or all of these new states obtaining still
more states, etc. Intuitively, this process has the program
“wandering around the state space” looking for a goal
state—much like a rat in a maze. Obviously if this is to
work, the program needs some bookkeeping devices to keep
track of where it has been, how it got there, and where it
might still go. It also needs a decision mechanism to
determine where to go next. The key ingredients for doing
this are the open list, the closed list, the search tree, and
the evaluation function, each described below.

1) OPEN is a list of states, or nodes, in the state space
which the program knows about but to which the legal
moves have not yet been applied. Initially the beginning
puzzle configuration is placed on OPEN. In a typical cycle of
the search procedure a node is removed from OPEN and all
legal moves are applied to it obtaining a set of successor
nodes. One says that the node removed from OPEN was
expanded and that the successor nodes were generated from
it.

2) CLOSED is a list of nodes which have been removed from
OPEN and expanded. Why bother to remember a node we
have already expanded and hence seem to be through with?
The reason is so that whenever we generate a new node we
can tell whether or not it has been previously generated.
Namely, we compare the new node with the entries on
OPEN and CLOSED. If we find a copy of it there, then we
will behave differently than we would had the node not been

previously discovered.

3) When a new node is generated, the program will place in
its record of the node a pointer to the node’s parent. The
resuiting structure of nodes and pointers forms a tree, called
the search tree. The initial problem state is the tree’s root.
The sole purpose of the search tree is to enable the program
to find its way back to the start once it has found the goal.
By following the parent pointers back to the root, a listing of
the legal moves from start to goal is obtained.

4) We come now to the crucial question: In what pattern
shall the program “move through the state space?” This is
equivalent to asking “in what order shall it expand the
nodes which are on OPEN?" This decision is made by an
evaluation function, f. When f is evaluated on a puzzle state
it returns a real number: the smaller that number is, the
more likely it is felt that the given state is close to a goal
state. The search program expands that node on OPEN
whose f value is lowest. Most of the apparent “smartness” of
our program is due to f. Without a good evaluation function,
all is lost.

Let us examine the algorithm of Figure 4 more closely. In
the outside iteration, the program removes from OPEN the
“most promising node” (lowest f value), puts this node on
CLOSED and then expands it, obtaining all legal successors.
If there is no solution, then those nodes not seen before are
placed on OPEN, and another iteration is made. CURRENT
is a location which references the node now being expanded.
If several nodes on OPEN are tied with the lowest { value,
then the “lexically” lowest is chosen. This simply means that
the program views the board description as a string of

4 The Computer Journai

Figure 5: The state space for a fictitious puzzle is shown in Figure
5a. Figures Sb, 5c, and 5d show the search tree and solution
(darkened path) found by three evaluation functions. In 5b. f
rewards being close to START, yielding a breadth first search. in 5¢,
f rewards being far away from START, yielding a depth first search.
in 5d. the t of 5b has added to it a heuristic component which
punishes nodes for being circular, less for being triangular and not
at all for being square. The numbers beside each node are the f
values (see article for computation details). It is assumed that ties
are broken lexically (eg., in figure 5b node a is expanded before
node b).

characters and chooses the smallest string relative to
normal sorting of character strings. Alternatively, such ties
could be broken “arbitrarily.” But it turns out that the
success of many evaluation functions on a particular initial
puzzle varies tremendously (sometimes by a factor of 1000)
with how such ties are broken. Rather than leaving the tie-
breaking up to an accident of coding, we choose to make it
an explicit part of the algorithm. For one thing, our results
are more easily duplicated by others. We return to this
problem later because it raises the question of how we can
properly judge the effectiveness of an evaluation function.

Evaluation Functions:
The Main Source of Intelligence

It is important to understand how different evaluation
functions can alter the search pattern. Figure 5 illustrates
this. In Figure 5a the state space for a fictitious puzzle is
shown. Some of the states are shaped as circles and others
as triangles or squares. Each state is given a name (eg.,
S,a,b, or G2) and there are two goal states. For each node N
in Figure 5a let g(N) be the least distance from S to N that
the program has seen at a given instance, where we assign
to each directed arc a distance of 1. One common practice is
to set fiN)=g(N). Figure 5b shows the search tree that
results when the algorithm of Figure 4 is run on this

example. The darkened path shows the particular solution
which is discovered. The numbers beside each node give its f
value. As the algorithm iterates, the search tree is built up
level-by-level, left-to-right. A completed level in the search
tree corresponds to having investigated all nodes within a
fixed distance of START in the state space. Due to this
systematic expansion from START in all directions, the
algorithm is called “breadth first.” It is an example of a
"“blind search” because no heuristics are used.

Another type of blind search is called “depth first"
because it always favors expanding those nodes which are
furthest away from START. To achieve it in the puzzle of

Figure ba, set f(gTART)=0 whenever a node Q is
generated from a node P, we set f(Q) = f(P) - 1. The resulting
search tree and solution obtained is shown in Figure 5¢c. A
deeper and more costly goal is found than in the breadth
first case; however, fewer nodes are generated. For hi-Q it is
very important to go deep quickly. More about this shortly.
Now suppose we would like to have a more-or-less breadth

first search tempered by some heuristic information. For
example, suppose a hunch tells us that whenever the
program generates a square node (eg., like d or f in Figure
5a) then it is probably close to a solution and it should keep
moving in that direction. A triangular node (like j in Figure
5a) is similar but not as good. Then we might define the
“heuristic function” h by:

h(N)=0if N is square

h(N)=1if N is triangular

h(N) = 4 if N is round
The heuristic function punishes nodes for being round or
triangular, but the latter less. Define f = g + h. The effect of
g is to “add breadth to the search.” If the program gets
carried away following square and triangular nodes deeply
into the state space, then sooner or later g will grow and
force it back to shallower nodes which it ignored earlier. In
Figure 5d this f is applied to the puzzle of Figure 5a. It
happens to work very well: the least cost goal is found while
fewer nodes are generated or expanded than with the other
evaluation functions. Setting f=h and dropping the g out
works just as well in this case. In general, however,
conventional wisdom suggests leaving the g component in
for the reasons mentioned above: h might sometimes lead
one astray and g helps cover for that event. (It's easy to
alter Figure 5a so that this happens.)

The Hi-Q Landscape

Since the state space for hi-Q is finite, even a blind search,
like breadth first, will eventually find a goal. The solution it
reports will require only 19 moves because all solutions
require exactly 19 moves. On what basis, then, can we say
that one computer search heuristic is better than another?
There are several criteria which students in my classes have
used:
a) The number of nodes generated: An algorithm which
consistently generated fewer nodes then others would seem
to be working less hard.
b) The number of nodes expanded: When a node is
expanded the algorithm is saying, “I think the goal is in this

direction.” If only 19 nodes are expanded, then the program
went directly to the solution. I've never seen a human do
that. An algorithm which consistantly scores in the low
twenties in this area would have to be considered good.

¢} CPU time: A low value is good while a high value offsets
good performance in the first two areas.

d) Consistency: A good algorithm performs well for all
initial states.

As we noted earlier, the performance of an evaluation
function varies tremendously on a given initial puzzle when
the { ties on OPEN are broken differently. A related
phenomenen is that the same algorithm will often get wildly
different answers when working on “symmetric duplicates.”
One configuration is a symmetric duplicate (SD) of another if
it may be mapped into the other by a combination of 90°
rotations and reflections on the diagonals. The initial
configurations of Figure 6 are all SDs. In row two of Figure
3, states three and four are SDs. My students and I were
initially surprised to see the same algorithm generate 100
nodes to solve one puzzle and then 100,000 nodes to solve
one of its SDs. This will happen even if ties are broken
lexically. The reason is very simple: most people code their
programs so that symmetric holes are assigned different
numbers and these numbers affect the order in which
successors are generated. Thus the successors of two SDs
will usually be put on OPEN in a different order. The effect
is that ties are broken differently when the program works
on two unequal SDs. Lexical breaking of ties does not help
because the fact that one state is lexically smaller than
another is no guarantee that an SD of the one state will be
lexically smaller than an SD of the other.

There are several possible approaches to this problem.
One is to collect statistics in categories (a), (b), (c), and (d),
above, for all 21 initial puzzle configurations. This method
was used to evaluate the Dudzinski program described
below. A very elegant approach was taken by Joel W.
Arnold: the order in which successors to a node are
generated depends only on the class of SDs to which the
node belongs and not on which particular SD it is. SD nodes
generate SD successors in a corresponding order. His
program behaves identically with respect to (a), (b), and (c)
when input states are SDs. (Arnold's SDs are relative to
rotation, but not to reflection.)

It is common to include a breadth component g (discussed
above) in the evaluation function of puzzies. My students
have universally found that in hi-Q this is harmful. On the
contrary, a depth component is required. Without this, the
search tree becomes too wide and programs run out of
memory, or time. The evaluation functions we use have the
form f=d+h, where h is the heuristic component and d
forces depth, much the same way that h forces breadth. In
hi-Q a natural form for d is d(N) = number of pegs left in the
configuration N.

Heuristics and Results
Five search techniques are compared in Ed Dudzinski's
program. All use evaluation functions of the form f=d +h,

Tre Computer Jouma

ooL 0 0 0 oo
0000 O © 000 0 o0 |
060000 00000 00 o}
00000 o000 oo_cLi
0 0 0 EOOO 0 0
° 0 0 P_]ooo 0 00 Joo‘
. 0600 0 0000 0 6000 O jo 00 o
00000 !ooooo 00000 ioooo
0000 0 00 000 0o 0 00 jo 0 0o 0
o o of L_]oo] 00 0 ﬁooo

Figure 6. The eight initial contigurations shown are " symmetric

duplicates’ of each other. The puzzles on each row may be
obtained by successive rotations of 90 degrees. The puzzles in
row 2 may be ob ained from the ones above them via a diagona
reflection. Puzzles with more than one peg missing can aiso oe
SD's. Treating SD's ‘‘equailly’” requires careful coding

where d is the depth component discussed above (number of
pegs on board} and h is a heuristic function. All searches are
depth first. This is achieved by requiring that each h be less
than one in absolute value and never change sign. Thus the
dominant rule in choosing nodes from OPEN is “take the
deepest;” only if there are depth ties is h relevant. Further
ties are resolved lexically. The five heuristic functions
compared are as follows:

1) Blind depth search; h is zero. This gives a basis for
comparison of the other heuristic functions.

2) Avoid filled corners; h is (number of filled corners)10.
The corner holes are numbered 1, 4, 14, 19, 21, 18, 8, and 3 in
Figure 1. This heuristic punishes states with filled corners.
The 1/10 factor keeps h less than unity assuring a depth first
search.

3) Favor a filled center; h is - (number of filled holes)/10.
Nodes are rewarded to the extent that their nine
centermost holes are filled.

4) Favor filled pivotal spots; h is — (number of filled pivotal
spots)/5. In Figure 1 locations 6, 10, 16, and 12 are called
pivotal because more jumps can be made from and over
them than any other hole.

5) Favor a high degree of freedom; h is - (number of
possible next moves)/30. This heuristic says to move in such
a way as to keep the number of options at a maximum. The
maximum number of successors a node can have is about 18.

Ed ran the program on all 21 initial configurations using
each of the five evaluation functions. Table 1 gives a
summary of his results. The five algorithms are compared
with respect to average number of nodes generated, average
number of nodes expanded, and average CPU time required.
To measure the consistency, or stability, of the algorithms,
the standard deviation is also given. Table 2 gives the actual
results for each algorithm and each possible start state. Ed
evaluates the situation as follows:

The exhaustive depth-first search algorithm with
lexical discrimination gives surprisingly good results,

6 The Computer Journa:

but this seems somewhat accidental. As algorithm 2

shows, and as other runs not inciuded here have borne
out, there are dead end branches that can easily trap
an uninformed depth-first search into generating many
thousands of nodes.

Results for algorithm 2 (avoid filled corners) are
deceptive in the average. For all but three cases, this
approach gives very good results with a small
investment in CPU time. Unfortunately, one run
caused the expansion of almost 190,000 nodes, greatly
swelling the mean figures. Hence, stability was poor, to
say the least.

The last three algorithms show more stability.
Approach 3, favoring pegs in center holes, significantly

improves on exhaustive depth-first search in all
categories. Algorithm 4 (pivotal holes) improves on
algorithm 3.

By far the most stable was the 5th algorithm (degree
of freedom). Obviously, this approach will result in the
generation of a lot of nodes, since it chooses the path of
most successors: the average number of nodes
generated by this approach exceeds the values for
algorithms 3 and 4. However, the performance of
algorithm 5 in terms of nodes expanded, or actual
moves, is remarkable. Six times, out of the 21 starting
configurations, the solution is found in the minimum 19
moves! In fact, for only two of the starting states does
the program exceed 22 moves. The price for this
facility of decision is paid in CPU time. Calculations of
the number of possible next moves is considerably
more time-consuming than methods used by the other
algorithms.

The ideal heuristic function, if it exists, will combine
the predictive power of algorithm 5 with the speed and
simplicity of algorithm 4.

The Dudzunski Program
Many people who write successful hi-Q search programs
do so on home computers. The Dudzinski program was

written in CDC extended FORTRAN and run on the
CYBER 750. The CYBER is a big machine but the program
requires very little memory. For example, it allows space
for only three hundred nodes to exist at a single time.
Because of judicious space management, this has proven
adequate for solving puzzles which generate over 189,000
nodes. The program has 220 executable FORTRAN
statements and uses 9000 storage locations for arrays. In
the CYBER the total lead module was 15,249 60-bit words.
Upon converting this to a home computing environment, I
estimate 39,000 bytes as a generous upper bound on space
needs. This will be considerably reduced if the hi-Q board is

represented more efficiently.

The terminology of the program is in terms of pennies
instead of pegs. Each node has six fields:

a) 5x 5 matrix to hold the board configuration (1 = penny,
0 =open, 9 = corner).

b} Open pointer.

¢) Parent pointer.

d} Closed pointer.

e) F value, where F is the evaluation function.

f) Number of pennies on the board.

“Pointer” means the node number of another node. Three
hundred nodes are created at load time via six arrays
corresponding to each of a,..f, above. The FORTRAN
declaration creates BOARD (5,5,300), OPENL(300),
PARENTL(300), CLOSEDL(300), F(300), and NR
PENNY(300). Any particular node “straddles” these arrays.
For example, node 23 has its F value stored in F(23), the
number of pennies on its board in NR PENNYI(23) and the
actual board configuration stored in the locations associated
with BOARD(, ,23). If node 18 generates node 23, then the
value in PARENTLI(23) is 18.

OPEN and CLOSED are maintained

as linked lists; i.e., as nodes chained
Number of nodes Number of nodes CPU time together via the pointer values in
generated expanded (sec) fields b and d. above. Removing a
standard standard standard node from OPEN and putting it on
average deviation average deviation average deviation CLOSED means simply changing a
1. Blind 372.4 489 8 280.9 498.0 240 188 few va}lues in fields b and d. The
nodes in OPEN are kept sorted on F
2. Avoid .
alue, and lexically where F values
Corners 9506.2 | 402048 | 93847 | 402087 | 3.893 16.068 vawe. Y _ :
are tied. Thus the main routine
3. Favor always chooses the first node on
Center 205.4 170.5 956 176.7 174 073 OPEN for expansion.
foles To save time, puzzles with more
4. Favor than seven pennies removed are not
Prvotal 160.4 168.3 935 164 4 195 061 checked for duplicates on OPEN or
roles CLOSED. This is the only deviation
3. Maximize from the algorithm of Figure 4. The
Freedom 2145 441 26.2 239 310 147 program checks for symmetric as
T - B well as perfect duplicates for the
Table 1: Five search algorithms are compared on all 21 initial hi-Q states. The first is a blind first three moves and perfect
depth first search to give some basis of comparison for the others. The others are informed duplicates for the next four.
depth first searches. The average performance with respect to nodes generated. nodes To conserve memory, the following
expanded, and CPU time is given. In each case the standard deviation is given to measure the management device is used. Suppose
consistency of the aigorithm. Algorithm 5 performs best in terms of number of nodes the previous node expanded has five
expanded and is very consistent. Unfortunatety its CPU time is high. pennies on the board and the current

)

one has eight. Since the search is depth first, the only way
this could happen is for the previous node to have been a
dead-end, i.e., no successors. The program is effectively
backing up to a node three levels higher. There are no
nodes on OPEN with five, six, or seven pennies. Therefore
we can “free” the previous node and three generations
of its ancestors without danger of eliminating a node
involved in an eventual solution. As long as such freedom
candidates are below the first seven levels, they are
removed from CLOSED and placed back on a list of
available nodes. This is how Dudzinski's program is able to
solve puzzles requiring the generation of 189,000 nodes
while there is only space for three hundred at a time.

Figure 7 shows the subprogram structure. The main
routine (listing 1) first initializes the board and various lists
by calling INIT. INIT reads the input puzzle and puts the
first node on OPEN (see listing 2). PENNY loops through
the open list calling PRUNE if the current node has no
fewer pennies than the previous one (indicating a dead-end).
Nodes are removed from OPEN, then placed on CLOSED if
they are no more than seven deep. MOVE is called to
generate successor nodes, check for a solution and insert
some or all of the successors onto OPEN.

GETNODE and FREE (listing 3) manage the list of
available nodes. This list is chained together via the “open
pointer field” mentioned earlier. GETNODE provides the
caller with the node number of an available node and

The Computer Journa 7

removes that node from the available list. FREE returns a
node to the available list.

EVAL is passed a pointer to a newly created node and
returns its F value. The five evaluation functions used are
shown in listing 4. PRUNE (listing 5) replenishes the list of
available nodes whenever a dead-end is encountered. This

PE{\JNY

[| 1

INIT PRUNE MOVE

GETNODE EVAL FREE CREATE
f ! L
GETNODE SOLVE SEARCH
] § | 1
DUPE FREE EVAL FILE
LEXCOMP

: Figure 7: The calling structure of subroutines in the Dugzinsk:
4program is shown. PENNY initializes the board (via INiT) then
l‘ removes nodes from OPEN, placing them on CLOSED as appropriate.
MOVE is called periodically to generate successors, check for a
solution and insert appropriate nodes onto OPEN. PRUNE frees
- nodes when dead-ends are encountered. EVAL evaluates f. The
other medule functions are described in the article.

1. Blind search 2. Avoid corners

Initial nodes nodes CPU nodes nodes CPU

Open gen. exp. time gen. oxp. time
Hole

1 558 468 321 147 28 150

2 130 42 139 171 34 160

3 135 39 145 143 22 140

4 125 21 141 152 32 161

5 1182 1098 .547 189,257 189,153 75.718

6 148 60 154 877 780 441

7 125 2 .146 162 22 163

8 1182 1098 .542 173 33 164

g 143 60 148 12 19 137

10 245 149 186 119 23 149

1 154 63 .153 153 29 139

12 161 58 157 3,407 3,277 1496

13 117 19 139 136 22 137

14 151 63 151 150 29 150

15 557 468 310 217 91 170

16 161 58 A72 3,407 3,277 1.508

17 118 19 137 137 22 133

18 131 32 149 184 K] AN

19 132 62 148 131 20 150

20 2042 1981 .884 134 19 AN

21 124 19 159 261 115 189

max 2042 1981 .884 189,257 189,153 75.718

Min 117 19 137 112 19 AN

Average 3724 2809 .240 9.506.2 9.384.7 3893

st. dev. 4898 4980 .188 40,2048 40,208.7 16.068

3. Favor center 4. Favor pivots 5. Favor freedom
nodes nodes CPU nodes nodes CPU nodes nodes CPU
gen. exp. time gen. exp. time gen. sxp. time
232 129 192 109 27 128 215 20 .279
154 52 157 250 179 172 213 22 288
456 385 .282 110 33 132 215 20 287
155 19 154 224 154 185 215 20 277
107 22 124 247 168 199 201 34 322
165 27 160 86 20 141 214 19 279
108 22 122 79 20 135 185 22 249
170 22 166 80 19 126 196 21 263
107 19 127 146 73 136 214 19 .284
119 28 137 84 20 136 PAR] 22 323
184 30 156 82 20 122 199 19 .256
157 19 156 78 20 128 174 19 243
109 19 129 184 104 154 405 132 961
181 30 154 79 20 132 215 20 278
124 28 139 114 52 130 188 22 .260
157 19 161 77 20 126 202 19 .275
110 19 132 243 174 179 207 20 .283
180 109 .167 80 19 131 215 20 2N
147 19 145 79 19 128 196 2t 21
881 786 .459 860 782 411 210 19 272
311 205 227 77 20 124 215 20 282
881 786 459 860 782 411 405 132 96!
107 18 122 7 19 122 174 19 243
2054 956 174 160.4 935 .155 2145 26.2 .310
170.5 176.7 073 168.3 164.4 061 441 239 147

Table 2. This shows the performance of all five algorithms on ali 21 initial states with respect to number of nodes generated, nodes expanded
and CPU time. Minimum, maximum, average and standard deviation figures are also given. The hole numbvrs in column 1 refer to Figure 1.
We see, for example, that algorithm 5 usually scores in the low 20's for nodes expanded, going almost directly to the solution. Algorithm 2
expanded 189,153 nodes for initial state 5 but only 22 for its symmetric duplicate, state 17.

8 The Computer Journa:

was described earlier.

MOVE (listing 6) makes all possible next moves and for
each one calls CREATE (listing 7) to generate the successor,
check it for goal status and put it on OPEN, if appropriate.
When a goal is found, SOLVED (listing 8) is called to print
out the solution along with the number of nodes generated
and expanded to reach it. The solution is a display of twenty
successive board configurations from start to goal.

Newly created non-goal nodes are passed by CREATE to
SEARCH (listing 9). If a node is no more than seven deep,
SEARCH calls DUPE to compare it with nodes already on
OPEN and CLOSED. DUPE checks for symetric duplication
on the first three levels and perfect duplication thereafter
(see listing 10). If a duplication is found, then SEARCH frees
the node. Otherwise it is inserted into OPEN by FILE
{listing 11), lowest F values first and ties broken lexically.
LEXCOMP (listing 12) compares game states and tells which
is lexically smallest.

The names and uses of all global variables are tabulated
in listing 1.

Conclusions

Ed's results suggest how humans can play a better hi-Q
game. I can’'t do the computations for algorithm 5 in my
head very fast, but I do find that algorithm 4 improves my
game. Ed’'s results also indicate that the best computer
search strategy for hi-Q has yet to be found. Among the
ideas that have not been thoroughly explored are these: a)
weight the board squares in a graduated fashion that is
more subtle than any of algorithms 2, 3, or 4; b) reward and
punish certain clustering patterns like three colinear pegs or
density around center of gravity, that are independent of
particular board squares; c) change the strategy according to
puzzle depth; d) combine strategies in a weighted fashion
and then look for the best weights.

To what extent is it cost-effective to check for duplicates
on OPEN and CLOSED? I don’t know. Perhaps a good
heuristic goes so directly to the solution that there is little
need to worry about duplicates.

There is another unanswered question: What is the size of
the hi-Q space?

There are several harder versions of the puzzle that
people often prefer. Consider using pennies instead of pegs.
Replace one of the pennies with a nickel and demand that
the nickel be the last coin on the board. Harder still, demand
that the nickel be left in the center. Another variation: use
all pennies and demand that the last penny be in the center.
Joel Arnold wrote a very nice search program to solve this
problem. He worked backwards, depth first, from the goal
and found the following heuristics effective: a} down to an
intermediate depth, concentrate on filling the perimeter of
the puzzle; b) in later stages give orthogonal moves
precedence over diagonal moves; ¢} up to the last move,
filling the goal spot is rewarded and emptying it is
penalized. (The last move must empty it.) Another ruse: he
sought any state symmetric to the desired goal. If the found
state was not the goal, transformations were made on the
sequence of moves, yielding a true solution. I'm not sure
that this is “fair.” It does improve average CPU time, and,

unsurprisingly, the number of nodes generated.

The last point raises the question of what is a fair
solution. In some sense we want generality because this is
what a human who plays the puzzle uses. Any program
which has 21 different procedures for each of the 21 start
states would have to be rejected. There are at least two
ways one could enforce generality and toughen the problem
a bit. 1) Demand that the program perform well when given
a partially solved puzzle; thus instead of 21 start states,
there are thousands. 2) Don't tell the program until input
time what the exact board shape is. It might be told upper
bounds on size, but no more. .

I hope some of you have as much fun with computer hi-Q
as have my students and I.

Editor's Note: The folloung program hstings tn FORTRAN are shgh! modifieatons ot
those supplicd by the author A feu changes were necessary i order to b rompat b
with plain vantla FORTRAN These changes tnrolied substituling siechara-ter ramants
names for some that were seven characters long remoring some erfended assignmer’
statements ‘eg. A = B= C=0 substituting single quutes for double quates surrounding
literal comstants and removing message strings from STOP statements Even so. the
changes required were far fewer than corverting one dulect of BASIC to another uhich
tlustrates the advantage of programmang 1n @ reasonably standardized language

We ran the programs hsted here with Microsoft FORTRAN80 under CP-M and
obtatned the same results listed by the author in Table z.. the only differencs heing that
Technival

the CPU timey were about twe orders of magnitude greater. Lance Rose

Editer

Listing 1

PROCRAM PENNY
THE MAIN ROUTINE INITIALIZES VARIABLES AND LOOPS THROUGH
THE OPEN LIST, WHICH 1S ORDERED BY P-VALUE. SUBROUTINE
MCVE 1S CALLED TO GENERATE SUCCESSORS TO THE CURRENT NODE.

GLOBAL VARIABLES:
COMMON NODE -
BOARE -
OPENL -

ONE NODE OF THE GAME SEARCH TREE

THE 5 X S5 PLAYING BOARD (CORNERS ARE UNUSED)
_INKS NODES ON THE OPEN LIST, WHICH CONTAINS ALL
UNCHECKED GAME STATES: THIS POINTER IS ALSO
USEL. TC LINK THE LIST OF AVAILABLE NODES

PARNTL -~ LINKS A NODE TC ITS PARENT, WHICH IS A BOARL
CONPIGURATION ONE MOVE PREVIOUS TO ITSELF
CLOSDL - LINKS NODES ON THE CLOSEC LIST FOR DUPLICATE

CHECKING: THE BOARD CONFIGURATIONS N THE TLOSED
LIST BAVE ALREADY BEEN EXPANDED

F - TBIS 5 THE VALUE OF THE EVALUATION FUNCTION WHICH
ATTEMPTS TO PREDICT THE PROBABILITY OF A SOLUTION
IN A NODE'S SUCCESSORS

NPENNY ~ THE NUMBER OF PENNIES REMAINING ON THE BOARD
COMMON LISTS - HEADS OF THE THREE LISTS OF NODES

HEAD - HEAD OF THE LIST OF AVAILABLE NODES

OPHEAD - HEAD OF THE L1ST OF OPEN NODES

CLHEAD - HEAD OF THE L1ST OF CLOSED NODES

COMMON CTRS COUNTERS USED TC TRACK THE EFFECTIVENESS OF THE

PROGRAM HEURISTICS AD MECHANICS

MRGEN THE NUMBER OP MNODES GENERATED
NREXP - THE NUMBER OF NODES EXPANDED
MAXNOD - THE MAXIMUM NUMBER OF NODE DATA AREAS IN LUSE AT

ANY TIME
LOCAL VARIABLES:

CURRNT - POINTER TO THE NODE BEING EXAMINED FOR POSSIBLE
EXPANSION
HLDPTR - POINTER OT THE NODE EXPANDED PREVIOUS TO THE

CURRENT NODE
LOGICAL SWITCH TO SKIP PRUNING TEST ON FIRST PASS

nANNNNNANAAANANNNaANANNNAANANANAANNANNN

PASS1 -

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY , HEAD
& ,OPHEAD, CLHEAD, NRGEN, NREXP, MAXIOD
REAL F
INTECER CURRNT, HLDPTR
LOGICAL PASS1
COMMON /NODE /BOARD(5, 5, 38@) , OPENL{ 38@) , PARNTL(388),
& CLOSDL(18#),F(388), NPENNY (380}
COMMON/LISTS/HEAD, OPHEAD, CLHEAD
COMMON . CTRS /NRGEN, NREXP, MAXNOD o
DATA PASSi/.TRUE./
CALL INIT
HLDPTR=OPHEAD
186 1P{OPHEAD.EQ.8) GO TO %88
CURRNT=OPREAD
OPHEAD=OPENL (CURRNT)
IF{PASS1) GO TO 288
1P THE SEARCH 1§ NO LONGER GOING DOWN INTO THE STATE SPACE,
THEN WE HAVE REACHED A DEADENC (ALL ALGORITEMS ARE VARIATIONS
OF DEPTH-FIRST) AND NODES WITH FEWER THAN 1) PENNIES ARE
PRUNED FPROM TRE SEARCH TREE TO PREE STORAGE.
17 (NPENYY {CURRNT) .GE . NPENNY (RLDPTR) }
& CALL PRUNE(HLDPTR, NPENNY(CURRNT))
C SINCE ONLY BOARDS GENERATED BY THE FIRST 7 MOVES ARE CHECKED
C POR DUPLICATES, NODES LOWER IN THE STATE SPACE ARE NOT SAVED
C ON THE CLOSED LIST.
208 IP(NPENWY(CURRNT).LT.13) GO TO 580
CLOSDL (CURRNT) =CLHEAD
CLHEA D=CURRNT
586 CALL MOVE{CLRRNT)}
HLDPTR=CURRNT
PASS1=.PALSE.
GO TO 188
988 6£TOP |
D

nnnn

Listing 2

The Computer Jourra

Listing 4b

naonNnanon

208 BOARD(1,J, PTR)

SUBROUTINE INIT
TBE INITIAL BOARD CONPIGURATION 1S GENERATED AND FILED ON OPEN.
“EVAL" 1S CALLED TO COMPUTE ITS F VALUE. POINTERS ARE INITIALIZED

LOCAL VARIABLES:
PTR -~ POINTER TO NEWLY-CREATED INITIAL NODE
INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, HEAD

& ,OPHEAD, CLHEAD, NRGEN, NREXP, MAXNOD

REAL F

INTEGER PTR

COMMON,/NODE/BOARD (5, 5, 38@), OPENL (388), PARNTL (399),

& CLOSDL(308),P(320), NPENNY (392)

COMMON /LISTS/HEAD, OPHEAD, CLKEAD
COMMON,/CTRS /NRGEN,, NREXP , MAXNOD

CLHEAD=¢

OPHEAD=8

HEAD=}

NREXP=8

NRGEN=1

DO 188 I = 1,299

188 OPENL(I)=1+41

OPENL(388) =9
CALL GETNOD{PTR}
DO 208 I = 1,5
DO 288 J = 1.5

BOARD(1,1,PTR
BOARD(1,S, PTR
BOARD(S,1,PTR
BOARD(S, 5, PTR)
READS THE INITIAL OPEN SQUARE FOR THIS GAME
READ(1,3@€) 1,0

IR
0000

3868 FORMAT(213)

BOARD(1,J,PTR)=8
NPENNY (PTR)=28
OPENL (PTR)} =8
CLOSDL (PTR) =8
PARNTL { PTR) =@
OPHEAD=PTR

CALL EVAL(PTR)
RETURN

END

SUBROUTINE EVAL(PTR)

C THE F-VALUE 1S CALCULATED POR ORDERING NODES ON THE GPEN LIST.
C

C PARAMETERS:

(o PTR - I1:POINTER TC NEWLY-CREATED NODE

C LOCAL VARIABLES:

C CORNER -~ THE NUMBER OP CORNER PENNIES

C

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY
REAL F
C BOARD CONFIGURATIONS WITH PEWEST CORNER PENNIES ARE FAVORED.

INTEGEF PTR, CORNER

COMMON /NODE/BOARD({ 5,5, 38#) ,OPENL(38@), PARNTL! 399, ,
& CLOSDL(308),F{(302), NPENNY (380)

CORNER=@
1IP(BOARD(1, 2, PTR) .EQ.
IP(BOARD{(1, 4, PTR) .EG.

CORNER=CORNER+]
CORNER=CORNER+]

1}

1)
1P(BOARD{2,1, PTR}.EC.1} CORNER=CORNER+1
1F{BOARD(2,5, PTR) .EQ. 1) CORNER=CORNER+1
IP(BOARD{4, 1, PTR).EQ.1) CORNER=CORNER~+1
IP(BOARD (4,5, PTR) .EQ.1) CORNER=CORNER+] ,
1P (BOARD(5,2,PTR).EQ.1) CORNER=CORNER+!

1P(BOARD(S, 4, PTR}.BO. 1) CORNER=CORNER+}
P{PTR)=PLOAT(NPENNY (PTR)) +PLOAT (CORNER) / 18.
RETURN

END

Listing 4¢

Listing 3

annannn

nanNnnon

SUBRCUTINE FREE(PTR)
DATA AREAS NO LONGER NEEDED ARE RETURNED TO THE LIST OF AVAILABLE
MODES .

PARAMETERS =
PTR - 1/0:POINTER TO USED NODE BEING RETURNED TO THE

LIST OF AVAILABLE NODES

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY , HEAD
& ,OPHEAD, CLHEAD

REAL F

INTEGEK PTR

COMMON , NODE / BOARD(5, 5, 398) , OPENL (388}, PARNTL (188),
& CLOSDL(38@),P(388), NPENNY (382)

COMMON,; L1STS/HEAD, OPHEAD, CLHEAD

PARNTL(PTR} =8

CLOSDL{PTR}=8

NPENNY (PTR)} =8

F{PTR)=0.

OPENL (PTR) =HEAD

HEAD=PTR

PTR=9

RETURN

END

SUBROUTINE GETNOD(PTR)
AVAILABLE DATA AREAS FOR NEW NODES ARE RETURNED
TO THE CALLING ROUTINES.

PARAMETERS :
PTR - C:POINTER TO AVAILABLE BODE DATA AREA

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, HEAD
& ,OPHEAD,CLHEAD, NRGEN, NREXP, MAXNOD

REAL P

INTEGER PTR

COMMON /NODE/BOARD(S, S, 388), OPENL(388), PARNTL(368),
& CLOSDL(3#0),P(3988), NPEWNY(388)

COMMON /LISTS/HEAD, OPHEAD, CLHEAD

COMMON / CTRS /NRGEN , NREXP, MAXNOD

DATA MAXNOD/8/

IP(HEAD.EQ.388) STOP 2

PTR=HEAD

1F(PTR.GT.MAXNOD) MAXNOD=PTR

HEAD=OPENL (PTR)

RETURN

END

naononno

nn

SUBROUTINE EVAL({PTR)

THE F-VALUE IS CALCULATED FOR ORDERING NODES ON THE CPEN LIST.
PARAMETERS :

PTR ~ I1:POINTER TO NEWLY-CREATELD MNODE
LOCAL VARLABLES:

COUNT - THE NUMBER OF PENNIES IN THE 9 CENTRAL LOCATIONS

INTEGER BOARD, OPENL, PARNTL, CLOSDL. NPENNY
REAL P

BOARD CONFIGURATIONS WITH PENNIES IN 9 CENTRAL LOCATIONS

ARE FAVORED.
INTEGER PTR,COUNT
COMMON/NODE/BOARD(5, 5, 360) , OPENL (380), PARNTL(308) .
& CLOSDL{388),P(38€), NPENNY { 30¢
COUNT=9
DO 188 1 = 2,4
DO 188 J = 2,4

188 1P(BOARD(I,J,PTR).EQ.1) COUNT=COUNT+1

P{PTR)=FLOAT (NPENNY(PTR)) ~FLOAT{COUNT) /18.8
RETURN

END

Listing 4d

SUBROUTINE EVAL(PTR)

Listing 4: The five elvaluation functions sampled are shown.

Listing 4a

anonn

nn

SUBROUTINE EVAL(PTR)
THE F-VALUE 1S CALCULATED FPOR ORDERING NODES ON THE OPEN LIST.

PARAMETERS :
PTR - 1:POINTER TO NEWLY-CREATED NODE

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPEMNY

REAL P
THE EVALUATION FUNCTION SIMPLY EQUALS THE NUMBER OP MOVES
TO THE SOLUTION, RESULTING IN A SIMPLE DEPTH-PIRST SEARCH.

INTEGER PTR

COMMON /MODE/BOARD (5,5, 388) , OPENL (388), PARNTL (388},

& CLOSDL(38@),P(388), NPENNY (300)

P(PTR}=PLOAT (WPEMNY{PTR))

RETURN

EwD

C THE F-VALUE 1S CALCULATED FOR ORDERING NODES ON THE OPEN LIST.
C
C PARAMETERS:
c PTR - 1:POINTER TO NEWLY-CREATED NODE
C LOCAL VARIABLES:
c COUNT -~ THE NUMBER OP PEMNIES IN THE 4 PIVOTAL LOCATIONS
C
INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY
REAL P
C BOARD CONPIGURATIONS WITH PEMNIES IN 4 PIVOTAL LOCATIONS
C ARE FAVORED.
INTEGER PTR,
comou/nooz/soun(s S, 388),OPENL(388), PARNTL (300},
& CLOSDL{368),P(388), NPENNY (388)
COUNT=0
1P(BOARD(2,3, PTR) .EQ.1) COUNT=COUNT+1
IP{BOARD(3, 2, PTR) .EQ.1) COUNT=COUNT+1
IF(BOARD(3,4,PTR).EQ.1) COUNT=COUNT+1
IF(BOARD{4,3,PTR) .EQ.1)} COUNT=COUNT+I
F{PTR)=FLOAT (NPENNY (PTR) }-FLOAT{COUNT} /5.8
RETURN
END
Listing 4e
SUBROUTINE EVAL(PTR}
C THE F-VALUER 1S CALCULATED FOR ORDERING NODES O THE OPEM LIST.
<
C PARAMETERS:
c PTR - 1:POINTER TO NEWLY-CREATED WODE
C LOCAL VARIABLES:
c COUNT - THE NUMBER OF SUCCESSORS O THE PASSED BODE
c
INTEGER BOARD,OPEML, PARNTL, CLOSDL, ¥PENNY
REAL P
C THIS EVALUATION PUNTION REDUCES THE ACTUAL P VALUE (MOVES TO
C SOLUTION) BY A PRACTION PROPORTIONMAL TO THE NUMBER OF CAILDREN
C COF THE NODE, THUS FAVORING THOSE BOARD CONFIGURATIONS WITH THE
C GREATEST NUMBER OF SUCCESSOR MODES. BY COMVERTING THE NUMBER
C OF CHILDREN INTO A PRACTION LESS THAN ONE (THE MAXIMUM WUMBER OF
C SUCCESSOR NODES 15 < 3@), WE RETAIN A DEPTH-PIRST SEARCH.
INTEGER PTR, COUNT
COMMON /NODE/BOARD(S5, 5, 386) , OPENL (386} , PARNTL(308),
& CLOSDL(300),P(30€) ,BPENNY (3688}
COUNT=8
po 188 1 = 1,5
po 188 J = 1,5
IF(BOARD(1,J,PTR) .NE. 1) GO TO 108
1IP(1.LT.3) GO TO 18
IF(BOARD(I-1,J, PTR).EQ.]1.AND.BOARD(1-2,J,PTR).2Q.8)
& COUNT=COUNT+ 1
18 1F(1.LT.3.0R.J.GT.3) GO TO 28
IP(BOARC(I-1,J+1,PTR).EQ.1.AND.BOARD{1-2,J+2, PTR).£Q.8)
& COUNT =COUNT+1
20 IP{J.GT.3) GO TO I8
IF (BOARD(1,J+1, PTR).EQ.1.AMD.BOARD(1,J+2, PTR) .2Q.8)
& COUNT=COURT +1
3e IF{1.GT.3.0R.J.GT.3) GO TO 48
u(so«w(hl.dﬂ,m).zq.Luo.mm(nz.ao:,m).m.n
. COUNT=COUWT+ 1 continued

10

The Computer Journal

Listing 4e, continued

Listing 7

49 IF(1.GT.3) GO TO 5¢
1P {BOARD(I+1,J,PTR).EQ.1.AND.BOARD{1+2,J, PTR) .EQ.8)
3 COUNT=COUNT+1
58 IF(1.GT.3.0R.J.LT.3} GO TO 68
1P(BOARD{1+1,J-1,PTR).BQ.1.AND. BOARD{1+2, -2, PTR) .£Q.9)
. COUNT=COUNT+1
68 IF(J.LT.3) GO TO 70
1F(HOARD(1,J-1, PTR) .EQ.1.AND.BOARD(1,J-2, PTR).EQ.8)
. COUNT=COUNT+1
18 IF(1.LT.3.0R.J.LT.3) GO TO 186
IF(BOARD(1~1,J-1,PTR).EQ.1.AND.BOARD(1-2,J-2, PTR).£Q.9)
. COUNT=COUNT+1

188 CONTINUE
F(PTR)=FLOAT(NPENNY (PTR)} }-FLOAT(COUNT) /38.9
IF(COUNT.EQ.8) F(PTR)=18880.

RETURN
END

Listing 5

nAnNnanAanNnNONNNNANNAaONHNAN

SUBROUTINE PRUNE(PTR,HILEV)
NODES WITH FEWER THAN 13 PENNIEZS BEGINNING WITH THE PASSED NODE
AND BACK THROUGH ITS PARENT NODES TO THE PARENT WITH "HILEV®
NUMBER OF PENNIES ARE RETURNED TO THE LIST GF AVAILABLE NODES.
NODES WITH 13 OR MORE PENNIES REMAIN ON CLOSED POR DUPLICATE COM-
PARISONS. “HILEV" 1S THE NUMBER OF PENNIES ON THE NODE CURRENTLY
BEING EXPANDED, WHICH 1S WHERE OUR SEARCH HAS BACKED UP TC AFTER
REACHING A DEAD END. BY PRUNING ONLY TO THE LEVEL OF THE CURRENT
MODE, WE DON'T CHANCE ELIMINATING PARENT NODES OF AN EVENTUAL
SOLUTION, BUT WE WILL ELIMINATE ALL DEADEND BRANCHES BELOW THE
13 PENNY LFEVEL.

PARAMETERS:
PTR - 1/0:POINTER TO NODE EXAMINED FOR POSSIBLE EXPAN-
SION JUST BEFORE THE NODE BEING CURRENTLY EXAM~
INED; THIS NODE COULD NOT BE EXPANDED; IF THIS
NODE. 1S PRUNED, PTR IS SET TO ZERC
HILEV - 1:THE NUMBER OF PENNIES ON THE GAME BOARD OF THE

NODE CURRENTLY BEING EXAMINED FOR POSSIBLE

EXPANSION
LOCAL VARIABLES:
PARENT -
HLDPTR -

POINTER TC PARENT NODE
POINTER USED TO TRACE FROM THE PASSED NODE BACK
THROUGH ITS PARENTS

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY

REAL F

INTEGER PTR,HILEV, PARENT, HLDPTK

COMMON /NODE 'BOARD (5, 5, 382), OPENL{ 38@}, PARNTL(380),
& CLOSDL{388).F(380), NPENNY(398)
IP{NPENNY(PTR).LT.HILEV) GO TO 188
IF(NPENNY(PTR}.GE.13) RETURN

CALL FREE(PTR)

188 HLDPTR=PTR

298 PARENT=PARNTL(HLDPTR}

1P (NPENNY (HLDPTR .GE.13) RETURN
CALL FREE(HLDPTR)

IP(NPENNY (PARENT) .GT.HILEV} RETURN
HLDPTR=PARENT

GO TO 280

END

anNnNNannNanNnnNnn

SUBROUTINE CREATE(PTR,L,M.N,0,P,0)
THE PARENT NODE 1S COPIED INTC A NEW DATA ARBA, THE I
MOVE 1S MADE, AND POINTERS ARE SET. 1P THE GENERATED - 2RP
1S A SOLUTION, IT 15 PRINTED OUT AND EXECUTIOR STOPS.

PARAMETERS :
PTR - I:POINTER TO NODE BEING EXPANDEL
L,M = I1:COORDINATES OF “JUMP FPROM® POSITION
N,0 = 1:COORDINATES OF "JUMP~OVER" PCSITION
P.Q - I1:COORDIRATES OP “JUMP TO® POSITION

LOCAL VARIABLES :
NEWPTR ~ POINTER TO NEWLY-CREATED SUCCESSOR NODE
INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, NRGEN

& , NREXP, MAXNOD
REAL F
INTEGER PTR,NEWPTR,1,J,L,M,N,0,P,Q
COMMON /NODE/ BOARD (5, 5, 388) , OPENL (18@) , PARNTL(384),

& CLOSDL(308),P(3P@),NPENNY (380}

COMMON / CTRS /NRGEN , HREXP , MAXNOD
CALL GETNOD(NEWPTR)

NRGEN=NRGEN+1

OPEEL (NEWPTR) =0

NPENNY (NEWPTR) =NPENWY { PTR) -1
PARNTL (NEWPTR) =PTR

Do 182 I = 1,5

DO 188 J = 1,5

188 BOARD(I,J, NEWPTR)=BOARD(1,J, PTR)

BOARD(L, M, NEWPTR) =0

BOARD (N, O, NEWPTR) =8
BOARD(P, Q, NEWPTR } =1

IF (NPENWY (NEWPTR) .NE.1) GO TO 158
CALL SOLVED(NEWPTR)

STOP

158 CONTINUE

CALL SEARCH(WNEWPTR)
RETURN
END

Listing 8

Listing 6

nonann

SUBROUTINE MOVE({PTR)
ALL POSSIBLE NEXT MOVES ARE TAKEN, GENERATING EVERY SUCCESSOR
TO THE CURRENT WODE.

PARAMETERS :
PTR - I:POINTER TO NODEZ BEING EXPANDED

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, NRGEN
& , NREXP, MAXNOD
REAL F
INTEGER PTR
COMMON /NODE/BOARD (5, 5, 300) ,OPENL (388) , PARNTL(388),
& CLOSDL{308),r(398),6 NPENNY (388)
COMMON /CTRS / NRGEN, NREXP , MAXNOD
NREXP~NREXP+1
DO 188 1 = 3,5
Do 188 J = 1,5
IF(BOARD(1,J,PTR).WE.1) GO TO 188
IP{1.LT.3) GO TO 18
IP(BOARD{I-1,J, PTR).EQ.1.AND.BOARD(1-2,J, PTR) .EQ. 8}
& CALL CREATE(PTR,1,J,1-1,9,1-2,J)
1e IF(1.LT.3.0R.J.GT.3) GO 10 28
IP(BOARD(I-1,J+1,PTR).EQ.1.AND. BOARD(I~2,J+42, PTR).EQ.B)
& CALL CREATE(PTR,1,J,1-1,J41,1-2,J+2)
28 IF{J.GT.3) GO TO 38
IF{BOARD(I,J+1,PTR).EQ.]).AND.BOARD(1,0+2,PTR).EQ.0)
& CALL CREATE(PTR,I,J,1,J3+41,1,J+2)}
e IP(I.GY.3.0R.J.GT.3) GO TO 48
IF(BOARD(I+]1,J+1,PTR).EQ.1.AND.BOARD(1+2,J+2, PTR) .EQ.0)
& CALL CREATE(PTR,1,J,1+1,J+1,142,3+2)
40 1F{1.GT.3) GO TO 58
IF(BOARD{1+1,J, PTR) .EQ.]1.AND.BOARD(1+2,J,PTR).20.8)
3 CALL CREATE(PTR,1,J,1+1,J,1+42,J)
H IF(1.GT.3.0R.J.LT.3} GO TO 68
IF(BOARD(I+1,J-1, PTR).EQ.1.AND.BOARD(1+2,J-2, PTR) .EC.8)
. CALL CREATE(PTR,1,J,1+1,3-1,142,3-2)
Y] IP(J.LT.3) GO YO 78
IP{BOARD(1,J-1,PTR)}.EQ.1.AND.BOARD(I,J-2,PTR).EQ.#)
. CALL CREATE(PTR,I,J,1,J-1,1,0-2)
78 IP(1.LT.3.0R.J.LT.3) GO TO 1pe
IP(BOARD{I-1,J-1, PTR) .BQ.1.AMD.BOARD(1-2,0-2,PTR) .EQ.8)
& CALL CREATE{(PTR,I,J,1-1,J-1,1-2,J-2)
188 COWTINUE
RETURN

aAnNnnNnnonNnNnnnnn

SUBROUTINE SOLVED(PTR)
THE SOLUTION IS PRINTED OUT, ALONG WITH THE NUMBER OF NODES
GENERATED, THE NUMBER EXPANDED, AND THE MAXIMUM NUMBER OF KODE
DATA AREAS IN USE AT OME TIME IN REACHING TH1S SOLUTION.

PARAMETERS :
PTR - I1:POINTER TO SOLUT]ION NODE
LOCAL VARIABLRES:
PRTPTR - ARRAY OF POINTERS TRACING PATH FROM ROOT NODE
TO SOLUTION

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, NRGEN
& ,NREXP, MAXNOD

REAL P

INTEGER PTR, PRTPTR{28)}

COMMON /NODE/BOARD(5, 5, 388), OPENL (388) , PARNTL (380),
& CLOSDL({3@9),F({3p¢€),NPENNY (309)

COMMON , CTRS / WRGEN, NREXP , MAXNOD

WRITE(1,1868) NRGEN, NREXP

PRTPTR{1)=PTR

DO S8 1 = 2,28

I1=PRTPTR(I-1)

5@ PRTPTR{1)=PARNTL(Il)

DO 288 K = 1,17,4
14=21-K
11=PRTPTR{14)
14=20-K
I2«PRTPTR(14)
14=19-K
13=PRTPTR(14)
14=18-K
I4<PRTPTR{14)
WRITE(1,2008)
DO 288 I = 1,5

282 WRITE(],3888) (BOARD(1,J,11),J=1,5},

& (BOARD(I,J,12),J=1,5},(BOARD(I,J,13),
& J=1,5), (BOARD(1,J,14),J=1,5)
WRITE(1,48088) MAXNOD

1886 PORMAT(1H1, 18, ' NODES GENERATED',5X,18.' NODES EXPANDED')
2888 PORMAT(1H)

3800 FCRMAT(IH ,4(513,2X))

4886 FORMAT(1HS, 'MAXIMUM NODES IN USE =',16)

RETURN
END

Listing 9

annnnNnAannNnn

SUBROUTINE SEARCH{PTR}

BOARDS WITH 13 OR MORE PENNIES ARE CHECKED TO SEE IF DUPLICATES

EXIST ON THE OPEN OR CLOSED LIST AND PREED IF THAT IS THE CASE.

THOSE THAT ARE UNIQUE, AND ALL BOARDS WITH FEWER THAN 13 PENNIES
ARE FILED OM THE OPEN LIST 1N INCREASING ORDER OF F VALUR.

PARAMETERS :

PTR
LOCAL VARIABLES:
MOVPTR

180

208

- 1/0:POINTER TO WEWLY-CREATED NODE
~ POINTER USED TO TRAVERSE THE OPEN AND CLOSED L1STS

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY , ARAD
& ,OPHEAD, CLERAD

REAL P

INTEGER PTR, MOVPTR

LOGICAL DUPE

COMMORN /BODE/BOARD (S, 5, 388) , OPENL (388) , PARNTL{ 388},
& CLOSDL(386),7(388), NPENNY (380)
COMMON/L1STS/HEAD, OPHEAD,, CLARAD
MOVPTR=OPERAD

IF(SPENWY (PTR).LT.13} GO TO 688
1P(MOVPTR.EQ.#) GO TO 180

1P (NPENWY (PTR) .NE. NPENNY (WOVPTR)) GO TO 208
1P(.MOT.DUPE(PTR, NOVPTR)) GO TO 288

CALL FPREE(PTR)

L
NOVPTR=OPEML (MOVPTR) continued

=]

a

Listing 9, continued

The Computer Journa

Listing 10, continued

11

GO TO 108
388 MOVPTR=CLHEAD
48¢ IP(MOVPTR.EQ.9) GO TO 688
1F (NPENNY (PTR) . NE.NPENNY (HOVPTR)) GO TO 568
1F{ .NOT.DUPE (PTR, MOVPTR}) GO TO 588
CALL PREE(PTR)
RETURN
588 MOVPTR=CLOSDL (MOVPTR)
GC TC 488
688 CALL EVAL(PTR)
CALL PILE(PTR)
RETURN
END

1P {DUPE)} RETURN
DUPE= . TRUE.
Do 888 I = 1,5
DO 8088 J = 1,5
J1=6-J
888 IF(BOARD(I,J1,PTR).NE.BOARD{JL,I,TSTPTR)) DUPE=.PALSE.
RETURM
END

Listing 11

Listing 10

LOGICAL FUNCTION DUPE(PTR, TSTPTR}
A "TRUE" VALUE 1S RETURNED IF THE PASSED NODES ARE DUPLICATE
CONFIGURATIONS. BOARDS WITH 19,18, OR 17 PENNIES ARE CHECKED
FOR BOTH PERFECT AND SYMMETRIC DUPES {4 ROTATIONS THROUGH BOTH
MIRROR IMAGE REPRESENTATIONS). BOARDS WITH LESS THAN 17
PENNIES ARE CHECKED ONLY POR PERFECT DUPLICATES.

PARAMETERS :
PTR -
TSTPTR -

I:POINTER TO NEWLY-CREATED NODE
1:PCINTER TO A NODE ON THE OPEN OR CLOSED LI1ST

nNnnNnannnnn

INTEGER BOARLC,OPENL, PARNTL, CLOSDL, NPENNY
REAL F
INTEGER PTR,TSTPTR,1.,J
COMMON; NODE/BOARD (5, 5, 38@) , OPENL (388), PARNTL (388},
& CLOSDL(389),FP(308), NPENNY(380)
DUPE=.TRUE.
DO 188 I = 1,5
DO 188 J = 1.5
188 IP(BOARD(I,J, PTR).NE.BOARD(I,J, TSTPTR}) DUPE=.FALSE.
1P(DUFE) RETURN
IFP(NMPENNY{PTR).LT.17) RETURN
DUPE=.TRUE.
DO 208 1 = 1,5
11=6-1
DO 288 J = 1,5
288 IP{BOARD(I,J,PTR}.NE.BOARD{J,I1, TSTPYR)) DUPE=.FALSE.
IF(DUPE} RETURE
DUPE=.TRUE.
DC 38€ 1 = 1,5
1i=6-1
DO 388 J = 1,5
J1=6—J
380 IF{BOARD(1,J,PTR).NE.BOARD(I11,J1,TSTPTR)) DUPE=.FPALSE.
IP(DUPE) RETURN
DUPE=.TRUE.
DO 482 1 = 1,5
DO 428 J = 1,5
J1=6-J
48¢ IF(BOARD{I,J,PTR).NE.BOARD(JI,1,TSTPTR)) DUPE=.FALSE.
IF(DUPE) RETURN
DUPE=.TRUE.
DO 56€ 1 = 1,5
DO 588 J = 1,5
Jlmé-J
580 IP(BOARD(I,Jl,PTR).NE.BOARD(I,J,TSTPTR)) DUPE=.PALSE.
IF(DUPE) RETURN
DUPE=.TRUE.
DO 686 1 = 1,5
11m6-1
DO 688 J = 1,5
J1=6-J
68€ IF(BOARD(I,J1,PTR).NE.BOARD(J,I1,TSTPTR)) DUPE=.FALSE.
IP{DUPE} RETURN
DUPE=.TRUE.
DO 788 I = 1,5
11%6-1
Do 788 5 = 1,5
J1=6-J
788 IF(BOARD(I,J1,PTR}.NE.BOARD(I1,J1,TSTPTR)) DUPE=.PALSE.

SUBROUTINE FILE{PTR)

TO THE NODE LAST COMPARED TU THE NEW NCLE

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY, HEAD
& ,OPHEAD, CLHEAD

REAL P

IFTEGER PTR,MOVPTR, LAGPTR

LOGICAL LEXCMP

COMMON /NODE/BOARD(5, 5, 380) , OPENL (388) . PARNTL (388),
& CLOSDL(388),F(382), NPENNY (38¢)
COMMON/L1STS/HEAD, OPHEAD, CLHEALD
IP(OPHEAD.NE.8) GO TO 18@

OPHEAD=PTR

RETURN

188 1F(F(PTR).GT.P(OPHEAD)) GO TO 288

IP(F(PTR).EQ.? (OPREAD) .AND.LEXCMP (OPHEAD, PTR) }
& GO TO 280

OPENL (PTR) »OPHEAD

OPHEAD=PTR

RETURN

200 LAGPTR=OPHPAD
MOVPTR=OPENL (OPHEAD)

388 IF(MOVPTR.EQ.B) GO TO 488
IP(P(PTR).LT.F(MOVPTR}) GO TC 488
IP(F(PTR).EQ.F(MOVPTR).AND.LEXCMP{PTR, MOVPTR})

& GO TO 498
LAGPTR=MCVPTR
MOVPTR=OPENL (LAGPYTR)
GO TO 9P

488 OPENL(PTR)=MOVPTR
OPENL (LAGPTR) =PTR
RETURN
END

C NODES ARE FILED ON THE OPEN LIST ACCORDINC TO FP-VALUE, LOWEST FIRST.
C LEXICAL COMPARISONS ARF USED TO BREAK TIES BETWEEN F VALUES.

[«

C PARAMETERS:

c PTR - 1:POINTER TO NPWLY-CREATED NODE

C LOCAL VARIABLES:

o MOVPTR - POINTER USED TO TRAVERSE OPEN LIST, POINTS TC

[THE NODE CURRENTLY BEING COMPAREC TC THL NEw NODE
o LAGPTR ~ POINTER ALSO USED TCO TRAVERSE GPEN LIST, PCINTS
[«

[

Listing 12

LOGICAL PUNCTION LEXCMP(PTR], PTR2)

IDENTICAL TO THAT OF THE NEWLY-CREATED NOCE

€ 1F PTRL'S MODE HAS A BOARD CONFIGURATION TBAT IS LEXICALLY LESS
C THAN PTR2'S, “TRUE™ IS RETURNED. OTHEPWISE, THE PUNCTION

C RETURHS "PALSE".

c

C PARAMETERS:

c PTRI - 1:POINTER TO NEWLY-CREATED NODE

[4 PTR2 - I:POINTER TO NODE ON OPEN LIST WITH AN F VALUE
o

(o

INTEGER BOARD, OPENL, PARNTL, CLOSDL, NPENNY

REAL ¥

INTEGER PTR1, PTR2

COMMON /NODE/BOARD (5,5, 388) , OPENL.(388}, PARNTL(368),

& CLOSDL(3@e),r(3890),NPENNY(380)

DO 180 I = 1,5

DO 188 J = 1,5

1F(BOARD(1,J,PTR!).GT.BOARD(I,J, PTR2)) GO TO 158
188 IP(BOARD(1,J,PTR1}.LT.BOARD(1,J,PTR2)) GO TO 288
158 LEXCMP=.FALSE.

RETURN
2860 LEXCHMP=.TRUE.

RETURN 2

Did You Miss Any of These Issues?

To order back 1ssues. send $3 25 (includes postage) to The Computer Journal PC Box 1697 hanspet. MT 53303 Allow 3 to 4 weers for delivery

Volume 1, Number 1:

.

The RS-232-Cfyerial Interface, Part One.
Telecor 0\13 with #ge Apple]l: Transferring Binary Fijes.
Beginnet's Colu@@h~Part One: Anyone for a Little "KISS" Electronics?

¢ Build an “Epram.”

Volume 1, Number 2:

.

Fiie Transfer Programs for CP/M.

The RS-232-C Serial Interface. Part Two.

Build s Hardware Print Spooler, Part One.

A Review of Floppy Dick Formats.

Sending Morse Code With an Apple].

Beginner's Column, Part Two: Anyone for a Little "KISS" Electronics?

Volume 1, Number 3:

Add an 8087 Math Chip te Your Dual Processor Board.
Build an A/D Converter for the Apple].

ASCII Reference Chart.

Modems for Micros.

The CP/M Operating System.

Build a Hardware Print Spooler, Part Two.

Volume 1, Number 4:

* Optoelectronics.

s Multi-user.

e Making the CP/M User Function More Useful.
» Build a Hardware Print Spooler, Part Three.

o Beginner's Column, Part Three: Power Supply. Anyone for s Littie "KISS" Electronics”

Volume 2, Number 1:

s Optoelectronics.

* Multi-user.

¢ True RMS Measurements

¢ Gemini-10X: Modifications to allow both serial and paraliel operation.

Volume 2, Number 2:

 Build a High Resolution 5-100 Graphics Board
s System Integration

* Optoelectronics, Part Three: Fiber Optics

s Controlling DC Motors

¢ Multi-User

¢ DC Motor Applications

12 Tne Combuter journai

Build a High-Resolution S-100 Graphics Board

Part Two: Theory of Operation

by Lance Rose, Technical Editor

In the first part of this series we saw how the video
monitor uses its sweep circuits to create a raster scan with

which text or graphies information can be displayed. In this
installment I'll explain how the video board operates in
order to send the desired information to the video display
device.

Figure 1 contains a block diagram of the graphies circuit.
Let's look at each block and its function in turn. The state
generator contains the state information for each of the
possible logic states that the board can have (more about
“states” in a moment). It is essentially the brain of the board
and all the other parts center around it. The scanning block
continuously scans the video RAM and extracts information
a byte at a time for display. The video output circuit
combines the scanned information with timing information
provided by the state generator and outputs a composite
video waveform of the proper amplitude and impedance.
The arbitration circuit controls when the video RAM may be
accessed by the system for updating or reading information
stored in it. And finally, the bus interface circuit contains
the necessary buffers and control lines to interface the
graphics board to the S-100 bus.

Before looking at the actual schematic, we need to
understand a bit about what a “state” is. If this is redundant
to you advanced builders, please bear with me for a moment.

Intuitively one might think that a state is a set of
conditions for a circuit which has all signal levels and
timings specified, and in fact that is pretty much it. What
we are using here is called a “state machine” which is, in
simple terms, just a ROM or set of ROMS where each
memory address of the ROMI(s) causes the pertinent
information for that state to be output on the data lines.
This pertinent information is:

(1) how long the current state lasts,

State
Generator

/!

/
e

= L
i |
Bus r——ed AvomanonJ { Scan viaeo

! Interface | L Output |

| i

/
=
\ video Ram

Figure 1: Biock diagram of the graphics Crreunt

(2) the necessary output signals for this state in order to
control the rest of the circuit, and

(3) what the next state will be.

Complicated state machines can perform things like looping
and branching to other states (microprocessors are examples
of complicated state machines) but here the circuit is
simplified by assuming the next state to always be one
address higher in the ROM than the previous state. This
does away with looping and branching (not needed here
anyway) as well as additional ROM space to store the
address of the next state. This method is analogous to the
program counter in a microprocessor which simply fetches
its next instruction from the next higher memory address
unless a branch occurs in the program.

When the highest address of the ROMs is reached, the
address counters simply “wrap around” to the first state
again. Since we're dealing with a full interlaced video frame,
this wraparound occurs every 1/30 of a second.

Let's go through the circuit in Figure 2 and look at how
the various parts function.

Two of the gates in Ul are arranged in a conventional
crystal oscillator with a third gate serving as a buffer. This
oscillator is known as the “dot clock” since a new dot on the
horizontal line is displayed with each clock cycle. The
16MHz value is chosen as a frequency which will be
compatible with most video monitors, i.e. will not cause the
display to go off the edge of the screen but will give a full
screen display. If insufficient adjustment is available in the
monitor to view the entire horizontal extent of the display, a
higher frequency crystal can be used and the values in the
state ROMs changed. Conversely, a slower clock will widen
the horizontal display. Another choice is to program the
ROMs to display less than 640 horizontal dots. One nice
thing about a state machine is that it can be reprogrammed
to tailor the board to different systems. It is possible to be
compatible with some foreign TV standards by doing this. I
will discuss this in more detail later on.

Since the timing is critical in the scanning portion of the
circuit, gate delays have to be taken into account. This is
done by providing a second dot clock signal which is
nominally 180° out of phase with the first. This allows us to
use either of two clock signals which differ by about 31nsec.
This figure is just about right to compensate for the
additional delays incurred by the state length counters U3-
US so that video timing information latched out of the state
ROMs will synchronize with video data retrieved from the
video RAM.

The actual state generator is made up of U3-US5, 2732
EPROMs U6 and U7, ROM address counters U8 and U9,

inverter Ule and hex D flip-flop U10. At each state change,
the time of the next state is latched into counters U3-U5.
This time is measured in units of the dot clock period. At
the same time the outputs for this state are latched into
U10. These signals are, in order, (D0) blanking for the
composite video, (D1) sync for same, (D2) fast count enable
for the RAM address counters, (D3) and (D4) control signals
for bus access arbitration, and (D5) reset for the RAM
address counters.

The dot clock is divided by eight with counter U2 which
generates a byte clock signal. This signal, after inversion
with Ulf is used to load a new byte of information from the
video RAM into shift register Ul1 for subsequent output in
the composite video. This sequential process only occurs
when the display is not blanked. During blanking, the
blanking signal is fed back (after a little delay through U13a)
to Ul2a forcing the parallel load inputs of both the byte
clock and the LS165 shift register low. This effectively
prevents output from the byte clock from interfering with
the dot clock’s advance of the RAM address pointers via
Ul4a and Ul2b. This fast advance of 80 counts occurs
between lines so that the next 80 bytes of information
fetched from the video RAM will correspond to the scan line
two lines from the previous one (full interlace display). We
go to all this trouble so that the screen memory addresses
are contiguous and relate one-to-one with the visible lines of
the display in spite of the fact that in each field only every
other line is actually being displayed.

After a byte is loaded into Ull by the byte clock, it is
shifted out at the dot clock rate during the display portion
of the line. Open collector hex inverter gates Ul5a, Ul5b
and Ul5c combine the output from the video signal, blanking
and sync to create a composite video signal at the base of
transistor Q1. This signal is amplified by Q1 operating in an
emitter follower configuration. Resistors R5 and R6 provide
approximately a 75 ohm output for the video signal. Since
the risetimes of parts of the signal are quite short, this may
cause ringing in the video amplifier portion of some
monitors. This is seen as an extra bright band near the left
side of larger images and a higher brightness for individual
dots. Strangely enough, this effect is actually useful in some
types of display as it causes thin line images made up of
individual dots to merge together more smoothly than if it
were not present. Capacitor C2 bypasses the video output to
reduce the risetime and eliminate this effect if desired. A lot
depends on the individual monitor used so it should be tried
both ways to find the better setting.

Counters U16 and Ul17 provide the local RAM address
during periods of time when data is being scanned and
output to the video generator. Each time a new byte of data
is loaded from the video RAM into the shift register, the
address counters are incremented by 1 through Ul12b. At
the end of each line, pin 6 of Ul2b is held low by the
blanking signal and the output from U12b is controlled by
the input on pin 5. This input is the fast count signal
previously discussed.

Tri-state buffers Ul8 and U19 buffer the local RAM
address counters and drive the RAM address lines during

Tne Computer Journa: 13

local access. Since the video output circuit doesn't need
access to the RAM during horizontal and vertical retrace,
these are the times we use to allow the processor to have
access to the video RAM from the S-100 bus. When the
outputs from the state ROMs cause both pin 1 and pin 2 of
U20a to be high, U18 and U19 are enabled and the RAM
address lines are driven by the local RAM address counters.
Pin 6 of Ul4b is just the opposite and the bus RAM address
latches U21 and U22 are turned off. When either one of the
inputs to U20a goes low, the outputs switch and the video
RAM address lines are driven by the latches holding an
address written into them from the S-100 bus. In this state
the video RAM address read from or written to will be
determined by the S-100 system.

Since with two bits of information we can select one of
four states, you might wonder what the additional states
are. To explain this, let's assume the following: say that the
RAM is being accessed from the bus and a write cycle has
just begun. At this moment, a state change occurs and
either pin 10 or pin 12 of Ull goes high. Acting through
U13b this will generate a wait state on the S-100 RDY line
since pin 13 of Ul4c will also be high, indicating that the
board is currently selected. If the processor enters a wait
state before finishing the write cycle it will leave pWR*
active during the entire wait state. If we allow pWR* to
remain active at the RAM chips and switch to the local
address counter for the scan line, a spurious write will occur
on all RAM chips selected during that scan line. If we go to
another state with pin 10 low and pin 12 high on Ull, we
maintain the wait state but in addition disconnect pWR*
from the RAM chips via Ul2¢, U20b and U13c. Once pWR*
is disconnected from the RAM we can go ahead and let the
local address counters select the RAM address.

At the end of this scan line we perform the inverse
operation. First we switch back over to the bus RAM
address latches, and only then do we re-enable pWR*
remove the wait state and allow the processor to continue
its write cycle. This arbitration scheme effectively shares
the video RAM access time between the video scanning
circuitry and the bus access circuitry and prevents any hash
in the video display due to bus access during a scan line.

We don't have this problem during a processor read cycle
because it doesn’t matter if the S-100 data-in lines contain
data from the RAM address currently being scanned and not
the address we will ultimatiey read from. The actual read
operation will not complete until the desired RAM address
is back on the RAM address lines and the proper data is on
the data-in lines.

The bus access is performed in & pretty straightforward
manner. Exclusive NOR gates U25 and U26a and U26b act
as a comparator between the address on A2-A7 of the S-100
bus and the values preset by switches S2-S7. If the address
matches and an I/O operation is selected by either sINP or
sOUT high, pin 8 of Uld4d will go high indicating board
select. If a scan line is currently in progress, a wait state
will occur until pin 12 of Ul4c goes low. In addition pWR*
will not be activated as discussed above. If the bus cycle is a
read operation, pDBIN will be active and pin 8 of U20c will

14 The Computer journal i
220)
I +5 GND
i I {1 Do Lo s
fo rp P2 3
¥r70 13 3
- *ln LS193 T oot
3 “+ s 3 ? S T v2 vif
Dl p. b. II I:v Y:I o
teMi Xt “Uip Vie Vid -
R]
ool
a o o " P 10
LIS 5 YT IR o cuo +° Vie 3%
" lw I_f " ¢ |5 I A 5 (s
L MR ep, PL MR cP, PL mMR CP, v
ch, LSI93 T, cn LSI93 T, ch LS193 T, P
Po P P2 P3 po__PI_P2_P3 Po_P1 P2 P3 “'W
V3 15 | 1o |9 U‘f s |1 o |9 us 15 {1 1o |9
) 'JQE:
vt
- l'r].
i
? o i |13 ¢ 115 16 112 T |0 1113 e s e 112
't b0 p; 02 b3 oY DS bé D? Do O DL p3 Dy DS D6 7 B4
!
2732 2732 ‘h
) ’-DO;E Ué U? :_E.bw s .
. AO Al A1 A) AN AS AL A7 A Ao AN AO Al AL A3 Ay AS AL A7 At A% AD A A
- t 17 [c [s [« 3 i Tolaa e Ty Jtvcrv-zz.lnunu': '
]
-
)
'Y
I]
3 v 5 |é u e lg lg 3 I+ j& &6 Y
Q> @ @& @3 40 @) @2 @3 Qo Q@' @1 @3
- |/ —_ | 2
!z LS293 G Les Ls393 "9 ¢ e
MR Mg Lso® b- @droy

poazy —

19
2.2K52a8 23k 2.2x) 238)3.3x ! ' ! ’ ./a—j
% 3 4 1o] 3 4
) »)
mmmm}m%"lﬁvmtz \V v va

sl
+ T |3_'\{F49 9412. 34’ L L 4 A M AL A3 AY AS AL M
l el lels|e|s 2 [
O—E i‘b'o? ™
, WE —=d T 6/16—¢4 x I
CS.—dz-sn *
S\ 53\ se\ ss\ sé\ 7 @ @ @ @ l’ Tee T [13 lllf l,;,ﬁ
Al A3 AY A5 AL A7 V3o -U¢g pe O/ PL P3 D% bS
&)

NOTE: The above schematic is published for our readers’ personal use. The author retains all resale rights to the design.

The Computer Journal 1%

+5

2
210 2
3 vl 78
iy vil / 5 10 vIg
74 ch 0s he
2 5 LS 165 EFL '@@" AN S#50
+5 PO PP P3 _Pe PS5 PL_P7
o f3 i [[+ 5 |e Uida
! » ol J.; I o[:[!: olo 2
3l ? 2 DA D ?
Ko
5 /6
®/
7 /
R 3
0 LSO®
« AU
Y ‘- =
v =
15
=]]
T 2 Ui g 11 vi7 12
{ MR HR ™ Ha
10 b Uz L5393 = Ls 393
o Tizh @° ¢/ 81 @3 _cP _®o &l a1 a3 Go ®1_ a1 a3 P ®0 6! @1 43
U20q. Fl*sc 13 | fio {9 |2 3 v {5 & 13 {n lie |9 lg
' 3 < 1 1
Lsoo ' TR T [T ey 2 1y le e TRENITE
2 dz —-
J L3l) E, E,
4 _ LS 24 Lsoib44
Ls32 > L—,,GE; ¥ E,
: N o PR (I CR T R RRE
" vivh A0 Al A2 A3 A% A5 AL A7 AR Ad A0 A Al A13 AN ALS
Lsog }
N3 2 15 |6 (v v2/ 12 15 |7¢ 119 L] 2 ¢ 19 022 b lis i |79
_. © 3 ! [3 ¢
Ls 139 ——ds 0t g1 €2 JLS‘??‘*nv PS5 @6 @2 7 ? 2@ L_$3744* as ¢ 47
2 ¥
4’@_—““- 71" 00 o) 02 D3 by pE PE b J-l-l'"pa vi_bx 23 bw of pg »
4/. 3, s 3+ 12 12 13 v 17 1® 3 v (7 (¢ 13 lrgp 17 |70
6
2 e 16 @ vayg i 113 s |
&
‘ LS 2y4
E,
) 19 J/6 J/¥ |/ 9 |7 3
@ &)
0o oI/ o2 bX3 ore ms »Té
At!
LIz N
¢t A? A0 423 , v2od
2
[l] Are ["
J = I? ald T T @#
v27 {; (a2 i3 2,* Lr vag | |a |3 $ oS L"Mz 19 13 QU
Ae Al Az ¥ O As Al AL £ m a F,
o!—‘-‘ Qe Vate
3 LS 138 E"f/ LS 138 L5139
) s lw s aln e la |7 [S[*[3[x[n [0 |7 |7 2 i o
§ oy e, €S, c& cs &S, CSp CS, €S, €Sq €8y €5, CS, €5, €5, CF c5 €S, £, C5

16 The Computer Journal

THE MCPU-800
Lt l&

(/5 actual size)

turn on the data input buffer U24. If the bus cycle is a write
and bus access is allowed, the board select will combine with
pWR* through Ul3e, Ul5e and Ul5f to enable the data
output buffer U23. When this occurs, OE* to the RAM chips
is turned off to prevent conflicts between a RAM chip and
the data out buffer both driving the local data bus at the
same time. Ul5e and U15f provide some delay so that the
bus data out buffer holds its data valid until after WE® goes
false to the 6116's. In order to select the proper device to
write to, U29b is set up as an address decoder for A0-Al of
the S-100 bus. Depending on which port number of the four
is selected, data will be written to the low byte bus address
latch, the high byte latch or the video RAM itself at a RAM
location determined by the most recent values written into
the bus address latches.

Decoders U27, U28 and U29a select one of the 19 6116
RAM chips for reading or writing on both scan lines and bus
accesses. U20d is used as an inverter so that U29a will
select RAM address values of 8000H and up.

Though details of the arbitration may sound complicated,
it is actually a pretty straightforward scheme. Figure 3
shows the state ROM outputs at the various places in a
typical scan line.

Something to keep in mind here is that you need not
totally understand the circuit in order to successfully build

FULL-
BLOWN

Macr*ocornput;er* system on STD card _

8-BIT

Completely STD BUS
compatible.

4MHz Z-80A

64K RAM
2K/4K/BK/16K/ROM or
EPROM.

Memory map under
software control

24 bit parallel 1/0 - can also
serve as SAS! interface for
hard disk control.

Serial 170 with 8 bits of

170 for terminal or modem
control,

Three 10MHz counter/
timer channels.
Completely programmable
serial UART.

1797 Floppy disk controller
handles four 5 or 8” disk
drives. Standard drive
connectors for both sizes
on board. Single or double
sided. Single or doublie
density supported. All
digital data separator.

Parallel printer interface -
Centronics type.

On board interrupt
handling logic.

RAM is DMA controllable. "‘

MEMEX and IOEXP lines
are fully impiemented

Power-on and pushbunon
reset circuitry.

100 hour burn-in.
Excellent software support ¢

$795 Single Quantity

ILLER L
echnolo y lnc 5
647 N. Santa Cruz Ave.
Los Gatos, CA 95030

(408) 395-2032 -4

yie
(4
@/

@
a3

&4
as

|~ |98 s |~
el~|-lo o]~
a|~|~{s(9]8

D99 (08~
VS|~ |9 |s |~
B[~ 19 [8[8]~
o6 |88 |8 [~
9 [0 [8 |~ |~ {-

Figure 3: State outputs during a typical scan line.

it and use it. Some experience with wire-wrapping
prototypes is helpful, along with some patience since there
are quite a few connections to be made, particularly in the
video RAM portion of the board.

In the next part of this series I will describe how to build
and check out the board, and will also provide a program for
generating the state ROMs if you have access to an EPROM
programmer. We can also supply preprogrammed ROMs at
a nominal cost for those without such facilities. a

Tre Computer sournar 17

Multi-user

A Column by E.Q. Brooner

In previous columns we tried to avoid technicalities as
we outlined the general kinds of milti-user systems. With all
of that behind us, it's time to get a bit technical as we
describe a particular kind of network (Ethernet) and a
particular implementation known as “Etherseries.” Very
briefly, Ethernet is one of the earliest and most widespread
types of network, originally meant for use with
sophisticated minicomputers, and Etherseries is the
particular version designed for use with the very popular
IBM PC.

In contrast to many advertised net systems, this one is
actually available as an off-the-shelf product and this
reviewer has seen it working. Bob Metcalfe, one of
Ethernet's inventors, founded the 3COM corporation to
build and market network components. In his California
plant we observed 50 PCs all working away at the tasks
typically performed by desktop computers, all sharing one
large hard disk storage system and a few strategically
located printers. Figure 1 illustrates, in a simple way, how
several computers are connected to form a typical network

What's Different About Ethernet?

Designers attempt to define networks within the
framework of a seven-level protocol system; this sometimes
leads to more confusion than clarification. Briefly, a protocol
is a set of specifications for performing a certain function. If
you connect a peripheral (printer etc.) to your computer, you
use a certain standard method — RS232 for example. This is
a “level-one” protocol, which is a definition of how two
pieces of equipment communicate with one another. The
way the data is bunched together for transmission to the
printer constitutes a “level-two" protocol, of which there are
many kinds. These two protocols, whatever they may be,

Network Cable

AN —— S S e ST :%I>

=

- =E

see Fig. 2

o
i
K -~ i,

Figure 1

constitute a complete data exchange system.

So much for communicating between two devices. Now, if
we want to connect a larger number of devices, and
selectively communicate with one or the other at various
times, we need a third protocol to route and control the
communication process. Three protocols define a network.
The third protocol {(again, whatever set of rules is used for
the purpose) is what distinguishes a network from simpler
systems.

Ethernet is really a definition of the two lower protocols.
It defines them so clearly that any equipment connected via
an Ethernet can (theoretically, at least) communicate.
However, the third, or network control layer will differ as
we move from one machine to another. And the level one
and two protocols, which define Ethernet, are more-or-less
lumped together. For example, we cannot say that it uses
some particular standard or otherwise defined protocol at
each level. Ethernet is a communication system that
performs, in an integrated way, the functions that would
otherwise require two separate protocols.

There are a lot of Ethernets (the generic term) for use
with various kinds of computers. Etherseries as presently
defined is only for the IBM PC. (3COM’S literature also calls
the PC version Etherlink). A very similar Etherseries
package would suffice for Apples or some other micros, but
it would not be identical at the third level. The third level,
then, is usually unique to a particular machine or operating
system; it is a special, customized interface, usually
combining hardware and software components. Etherseries
for the PC consists of a single plug-in board and a &5
diskette and, of course, the interconnecting cable. An
important point to remember is that to the user, thic
network appears simply as an enhancement to PCDOS, in
the form of a few new commands.

How It Works.

All Ethernets have in common the CSMA/CD (carrier,
sensing, multiple access, collision detection) scheme for
“directing traffic" on the single coaxial cable that links all of
the users. CSMA/CD is one of the two major schemes that
are in use for this purpose (the other major method and the
many lesser ideas for accomplishing the same thing will be
discussed in future issues). When a user attempts to
communicate with another device, his network software
composes a “message” which includes both the data and the
routing instructions. The message may be so long that it has
to be broken into several smaller “packets” that will be
reassembled at the receiving end of the circuit. All of this is
done automatically; the user only enters simple commands,
such as would be used with one of his own peripherals.

18 The Computer Journal

Assume that a message is ready to go. The net

communication system is always "listening" to the cable. If
it has not heard any signals {data) being passed for the last
nine microseconds, it goes ahead and transmits the message
or packet. While transmitting {remember, at something like
10 megabits per second), it continues to listen. If what it
hears does not exactly match what it is sending, it assumes
that either: a) an error has been made in transmission. or
b} someone else has tried to transmit at the same time. In
any event, it has detected a “collision” on the cable. By
means of a rather complicated formula, known as the back-
off algorithm, it calculates a brief waiting period and tries
again. The back-off algorithm operates in such a way, and
the transmissions are so rapid, that if two messages do
collide on the first try, their next attempts will probably not
coincide, and both will succeed.

Every station on the cable “hears” every transmission,
but ignores those not addressed to it. This is typical of most
networks; the undesired messages simply go on by without
interrupting normal operation of the other users. In fact, a
user has no way of knowing whether messages are flitting
along the cable or not, unless one is addressed directly to his
equipment. Even if it is, the interruption is very brief;
network communication transactions typically take only
fractions of a second.

As It Is Really Used

As many as 1000 PCs could conceivably be connected
together, exchanging data and messages and sharing
peripherals; but let's be reasonable and stick to the 50 that
3COM was using when I visited their headquarters in
Mountain View, CA. First of all, each of the 50 PCs could,
and usually did, operate just as if it were the only one in the
building. Each had one or two floppys installed and some
had printers attached; some were doing engineering work,
some were for bookkeeping, and so on. At this point there
was no obvious difference between this installation and any
other large group of personal computers, except for the
coaxial cable running unobtrusively past the rear of each
machine.

But somewhere in the system there was a “disk
server” —Ethershare is the trademarked name for 3COM’s;
almost every network has something similar. Ethershare is
itself a computer complete with a keyboard, screen, gobs of
memory, and a 40 megabyte hard disk. The hard disk is
accessible in “chunks,” each containing about the same
amount of storage as a double density floppy. Figure 2 is a
schematic representation of a typical server.

These subdivisions of the disk are known as “volumes.”
Some are accessible to one user, some to another, and some
are available to anyone wishing to read them. The public
volumes are the key to many of the net's features. One or
more may be a common data base, or contain commonly used
software, available to everyone. One or more may be used as
a repository for “electronic mail” which is really a set of
electronic in-baskets and out-baskets where memos can be
exchanged. The others may be assigned to individual users
and can be password-protected.

Network Cable

/1\\ S S S S NS AN NS Y
f(~——F—~" """ "="~"="—7"="—="—=-=-- A
| |
i Interface Terminaol '
I |
] |
] |
| I
| C.PU. Memory |
! l
i A
| Printer 5 ‘

Hard Driver |—>!
‘ Disk To ,
| Printers
e e o o o e — - — - - —— —— - —— — 4

Say that a user has his own floppys. designated “A™ and
“B.” He can also have two volumes on the server, designated
“C” and “D.” To access one of the extra storage units, he
enters a simple LINK command that names the volume and
equates it with “C.” From that point on, until he
“UNLINKSs" it, he is accessing that volume, via the network,
just as if it were a third drive on his own PC.

Ethershare also controls a pair of printers. Everything
sent to one of the printers, from any location, is first
“spooled” and then printed when the printer is free. Of
course, this also frees the user to do other work after
sending a print command. (See the description of print
spooling which appeared in recent issues of The Computer
Journal)

When we reviewed the operation of this particular
installation it was new and the users were still in the
process of adapting themselves to it. The electronic mail
feature was the one which seemed to most impress those to
whom it was available. The mail program included a fairly
competent word-processing capability. With it a user can
compose a note or letter, edit it as with any other word
processor, then deposit it in one of the mail files which is
accessible to the addressee. Such “mail” can be sent to any
station or individual within the bounds of the network, or to
a group of addressees. The mail can be accessed on-screen
by the addressee anytime after it has been “sent.” After
that, it can be printed and/or destroyed. All messages are
date and time stamped and listed on a directory. This
system should be more practical than hand written memos,
and it is certainly more convenient to use.

Evaluation
Etherseries for the IBM PC is an available product and
not just someone's hope for the future. It is typical in many
ways of any other Ethernet, and bears some resemblance to

almost any of its many competitors. As far as price is
concerned, it is neither the lowest nor the highest priced
system available; at $950 per station, along with the
relatively high initial cost of the PC, (and the server) it is
probably out of the price range of all but the most serious
micro users.

Its performance is superior to many competing products;
the mail feature in particular is slicker than some others we
reviewed. 3COM is a leader in the Ethernet business and a
3COM product, associated with an IBM product is sure to be
dependable and supportable. If it is within your price range,
you could do much worse than tie a bunch of IBM PCs
together with this network.]

For further snformation, see¢ your IBM PC dealer. or contact 3COM Corporation. 1390
Shorebird Way, Mountian View. CA. 94043

Acknowledgement

An acknowledgement which should have
been included in Volume II, Number 2 of
The Computer Journal was inadvertently
omitted. The article “Controlling DC Motors
with a Microcomputer” by N. Bungard was in
part made possible by research funded by
National Science Foundation grant MCS-
8210194.

The Computer Jourra 19

VERSATILE DATA REDUCTION,

DISPLAY AND PLOTTING SOFTWARE
FOR YOUR APPLE" li

STRIPCHARTER — Turns your APPLE and Epson MX
series printer into an economical 4-pen chart recorder
Prints and dispiays continuous 1 to 4-channei strip- | ™
chants of any length Ideal for large data sets Numerous
user-selectable graphics options enhance output qual-
ity Inciudes 5 demos on disk with 37-page manual $100

VIDICHART — Proven tool for lab data management
Fast plots of 4 data sets with scrol:ng in 4 directions
zoom scaling on X and Y axes. 2 types of graphic
cursors and on-screen STATUS REPORT even plots
A D input while sampling ADD. SUBTRACT MULTH

PLY. DIVIDE. INTEGRATE. DIFFERENTIATE. AVER- TN x .
AGE or NORMALIZE data sets with SIMPLE COM- | .\ X"\~
MANDS 1{dealtor spectra. chromatograms. rate curves, ————

etc Includes SAMPLE DATA on disk with 28-page =T EnE
manual $75

SCIENTIFIC PLOTTER — Draws professional-iooking
graphs of your data. You choose data format. iengtt ana
position of axes. 20 symbols. error bars. labels any-
where in 4 orientations Includes 5 demos on disk plus
30-page manual $25

(For DIF file and Houston Instrument or H-P 7470A MR
plotter adaptations, add $25 for each option selected.)

CURVE FITTER — Select the best curve to hit your data
Scale. transform. average smooth. interpolate (3
types) LEAST SQUARES fit (3 types; Evaluate un-
knowns from fittea curve. Inciudes 5 demos on disk with
33-page manual $35

SPECIAL: VIDICHART. SCIENTIFIC PLOTTER
CURVE FITTER on 1 disk $120

Ada $1 .50 shpping on alt U S orgers VISA or MASTERCARD orgers accentec
Tragemarx of Apple Computer inC

» [YY= INTERACTIVE MICROWARE, INC.

lw' P.O. Box 139, Dept. 226, State College. PA 16804
CALL (814) 238-8294 for IMMEDIATE ACTION

Computer Nostalgia:
Who Invented the Personal Computer?

O ne of the present manufacturers likes to advertise that
they invented the personal computer; I think 1978 is the
year this supposedly happened. True? Absolutely not. In
1978 Apple was just beginning to be heard of; the Radio
Shack model 1 was selling well, and the Commodore Pet,
though less agressively marketed, had been around longer
than either and was (in many opinions) a better machine.

Before any of those “personal computers” were even a
gleam in their designer's eye, there were a large number of
what were then called “hobby computers.” The hobby
computers were usually available optionally as kits or
assembled products. The best known of these were the
Imsai and Altair. And before the commercially available
hobby computers, there were the real pioneers, individuals
and groups building essentially the same thing strictly from
scratch. These were the people who really “invented the
personal computer.”

The leader of that movement was Dr. Johnathon Titus of
Blacksburg, VA. The 8008 (the first 8-bit microprocessor
chip) came out in 1972. It was designed basically for control
applications, but Dr. Titus, who was then doing scientific
work with minicomputers, thought it had potential as the

basis of a homemade personal machine.

In 1972 he managed to obtain some 8008 chips (then $120
each) and designed and built the first so-called “Mark-8"
microcomputer. According to Titus, this first micro had 750
bytes (that’s less than 1K) of memory! A refined, printed
circuit version was written up in Radio Electronics
magazine in 1974, and this marked the beginning of the
movement toward hobby {(or personal) computers. User
groups all over the country, but primarily in southern
California, built and used Mark-8 microcomputers. And in
what was later to be known as “Silicon Valley” one of the
earliest computer clubs, known as the Homebrew Club, saw
hobbyists and professional engineers pooling their
knowledge to develop even more “hobby computers.” As
someone said at the time, “These guys build computers in
their garages and become millionaires.”

By late 1974 the 8080 chip, successor to the cruder 8008,
had dropped to $200 each. MITS (a now extinct company)
built a kit computer around the 8080 and what is now known
as the S-100 or IEEE-696 bus. They were swamped with
orders before 1975 got under way. MITS' Altair was closely
followed by improved look-alikes such as the (now also
extinct) IMSAI and several others.

Who invented the personal computer? It certainly wasn't
Apple, or even Tandy or Commodore and it happened long
before 1978. by E.G. Brooner |

£ ' ¥ 2 £ = T s 0 £

T =
1ne Computerist’s Calenua:

| son] wmon) vues | weo § Thums | Fm] sar |

M s s

I I S S

REEEEN

SYSTEM INTEGRATION

The Computer Lourna 21

Part Two: Disk Controllers and CP/M 2.2 System Generation

by Bill Kibler

Disc Controllers

In part one of this series I pointed out that a system could
be built with used parts for less than $1000. With this in
mind, I will try to show why buying a new disk controller
instead of a used one might be advisable. If you go to swap
meets, you will find many of the same type of disk
controllers for sale—mainly the CCS 2422. I have
considerable experience with this card, and I feel that it is
not a good buy. The documentation is good, but the unit’s
ability to interface (hardware) with other types of CPUs and
memory is rather poor. The CCS 2422 is not IEEE-696 (S-
100) compatible and was designed for their own cards only.
These cards abound at swap meets because their owners
have been unable to make them work satisfactorily.

Most CPUs, memory, and I/O ports, will work with each
other, and if not compatible can usually be altered. Timing
problems with I/O ports are rare, and memory is cheaper to
replace than to modify. Disk controllers are another matter,
however since their timing is quite critical. The VLS
controllers used in the newer units are either NEC upd765
or WD 179x. Both of these have a lot of special features,
some good and some bad. Common to both is the need to
read the data as fast as the chip provides it. The CPU'’s
memory fetch and write cycles must be faster than the
controller’'s read or write times in order to clear the
controller's data buffer and be ready for the next byte of
data. When the timing is not correct, the unit will error and
stop the data transfer. Software has advanced somewhat
since the units were first made and buying a used card with
no hope of upgrading is not desirable. CP/M 3.0 uses
multiple banks, and consequently disk cards that are
memory mapped may not work under banked operation.
Some manufacturers are supplying new BIOSs and possible
upgrades; these are always preferred but seldom seen at
discount prices. The cost of a system without a controller is
$300 to $400, and adding a new controller for $400 (with
software) will still keep the system price under $1000. This
new unit will be IJEEE-696 compatible and therefore will
work without hardware modifications. The software will be
current, possibly even CP/M plus, and the utilities will aid in
bringing it up. These are the premises under which I bought
the the SDSystem’'s Versa Floppy 11/696 and CP/M 3.0.
However, much of what I will review is also applicable to
buying used controllers or upgrading existing systems.

System Configuration
My system consists of the Computime CPU, SD’s VFII,
and SD’s Econoram II (a 256 K banked memory). Although
this is not an ideal system, it will help to illustrate the ease
and the problems of system integration. The first step in

any integration is understanding the individual components,

their memory map, and any special problems to be handled.
The CPU is a Z80 with a serial and parallel port. The boot

jump PROM or monitor will be on this card along with the

serial and parallel ports. The SD memory is 256K, with one

bank of 64K and four banks of 48K. One port is used to

switch the banks on the memory card, port FF hex. The disk

controller uses a WD 1795 and six port addresses: those

switchable ports are 60 through 67 hex. The software

purchased with the unit is CP/M 3.0 for their SBC-300. The

sale price, including CP/M + was just under $400 (CP;M for

$90!} and thus falls into our under $1000 system cost.

Keeping in mind the important points covered in part one,

let’s see how these units rate.

a) Documentation: Computime is better than SDSystems.

bl Hardware: generally good design (both IEEE/696).

¢) Software: SD's needs more and better documentation.

d) Adaptability: hardware ok, software needs help.

e) Support: both ok, SD needs better follow-through.

f} Repairability: no PROMS or PALS.

From the above quick guide, you can see that some plusses

and minuses do exist. Let's review three of these points in

more detail.

Documentation

Computime produces a rather complete manual on their
CPU, and SDSystems could learn something by looking at it.
Although I would not consider the CPU manual to be the
best, it does cover the topics completely enough to make
bringing up the unit fairly easy and straightforward. SD’s
manuals are quite brief and do not include a theory of
operations. There is a section called “Functional
Description” which replaces theory with an overview that
hides all important facts from the user. This manual should
be read carefully both for errors and for oversimplification
of explanations. A case in point is the section called "Port
Usage Data”; not mentioned is the fact that some entries
must be complimented first (drive select). The drive select
data has one line's data already complimented (bit 6, the
single/double density flag), showing how confusing
inadequate explanations can be even for the writers of the
manual.

The listing provided for the controller is only part of the
monitor and will not work as printed. SD has their own
operating system (COSMOS) and the DDBIOS listing has
routines for it. The disk select routines will fail if used as
written. This error was discovered when I mistyped the
program and the routines worked. I later discovered the
typo, corrected it and found the monitor would not work.
The next major problem is the lack of information on how

22 The Computer Journai

the system was intended to interface with other

components, both theirs and others. Normally, a theory of
operation would describe in detail the various handshake
operations, the this-before-that stuff, and would help the
software hacker to write his own programs. SD must
consider all information to be trade secrets, as they provide
little insight into the inner workings of their cards.

Software

SDSystem's implementation of CP/M 3.0 does not have
much competition to compare it with, and therefore it is
hard to know how good or bad it really is. It appears that
some work has gone into setting it up, but a considerable
number of programs were not included when I first started
on this project. SD was not supplying the full CP/M BDOSs;
you got either the banked or nonbanked version, but not
both. After three months of fighting, and a talk with the VP
of Sales, they should now be supplying all the original
Digital Research files. For the integrator this leaves only
the how and why of their disk controller’s timing in
question. A new DDBIOS is available (they are aware of the
many errors in the printed DDBIOS) but I have yet to
receive mine. This condition is to be expected, and a lot of
playing around will be needed to find the right software
handshakes for your system.

Support and Hardware

The Versa Floppy Il is the only card that I have been able
to bring up without a lot of cutting and hacking. I feel that
in terms of hardware, the product is quite sound and should
give a lot of trouble-free service. The design is rather
straightforward and, except for not having a PROM on
board, I have not been able to find anything to complain
about. The factory support has been about as expected, with
one surprise; the support person is still there after six
months. The company appears to be serious in wanting to
produce a good product and improve their image, but as yet
they haven’t achieved that goal. They welcome constructive
comments and will change their policy if a strong enough
case is presented.

Making It Work

Now that we have some idea of the product and the
support, let’'s look at what it takes to make it work. In
considering how to set up the system, I toiled long over the
final memory map, much as you should before starting. To
make this work for most people, the system will have to
come up in stages, first a monitor, then CP/M 2.2, CP/M 3.0
non-banked, and lastly CP/M 3.0 banked. Another
consideration is the use of existing 2.2 systems, both SD and
others. Most systems are port addressed disk controllers
with some form of boot/monitor PROM (either mapped or
phantom). The SD system was designed with a monitor at
E800hex, and disk PROM at F000hex. Through banked
switching, the loss of the memory space was minimized, but
for most users this will not be an acceptable solution. The
entry points to both the monitor and disk functions,
however, were the FOOOhex entries. In my design, a fixed

2K EPROM resides at F000hex that provides both monitor
and disk functions. I feel that this is fairly close to what
most users will have. This design also leaves the memory
open above the PROM for non-banked buffers. disk byte
storage tables, SCBs, RAMdrives, or whatever. The BIOS
also becomes quite short by making calls to the PROM for
disk 1/0, CON /0, and initialization. My personal preference
is to boot from a monitor after I know the basic system is
running rather than to wonder why the disk keeps on
running without anything happening. Checking the memory
map listing will indicate options and give comparisons to
other systems.

CP/M 2.2

Assuming that you are bringing your system up from
scratch, you will have to burn a PROM for F0OOhex. This
PROM should contain a monitor and the disk routines found
in DDBIOS. Listing 1 contains the needed changes to make
it run. Those routines dealing with the FORMAT portion
will not fit if you include a monitor. They can be included in
a separate new format program or in the PROM if an auto-
boot operation is intended. I have made a separate format
program because of the monitor and because I have changed
the disk parameters, the number of drives and the layout.
As the user of the system, you must at this point make some
decisions as to the final operation of the system. Now is the
time to determine the number of drives, the number of
formats to be used, the types of 1/0, and any other special
functions you may desire. To make it easier to get the 2.2
software up and running, I have chosen to include only
information for 8" single density disk drives. For
transferring information and working between other
systems, this is the preferred format. Larger densities
require disk buffers and deblocking algorithms to combine
CP/M’'s 128 byte sectors with the disk's actual physical
sector sizes. The use of the non-standard 128 byte double
density sector saves this blocking problem and is what SD
used at first (users could still implement this format if
needed in 2.2; 3.0 does the deblocking internally). The
DDBIOS listing is somewhat mixed up when it comes to
double density and will not work correctly as listed in the
manual. For an easy way out, SIG/M has a ready BIOS on
their disk #26, complete with a format program. The
software listings provided here show how short a BIOS can
be when using PROM based functions, and what is needed if
only the listings from a manual are used. I recommend The
Programmer’'s CP/M Handbook by Andy Johnson-Laird for
more in-depth discussions on CP/M 2.2's inner workings.

For people bringing up other systems, the source code
needed for the monitor is usually found in the disk controller
manual, either in a monitor or as a separate BIOS program.
The major advantage of bringing the unit up under CP/M 2.2
is the readily available support currently at hand. I obtained
the original 2.2 BIOS from a fellow club member. This BIOS,
with some modifications, was up and running in 30 minutes.
This made me sure my system worked and gave me a
system with which to write the BIOS for CP/M 3.0. Let’s
now look more closely at the necessary steps in bringing up

CPM22.

Step 1: List all ports and memory locations that will be
used by the various cards. In CP/M 3.0 these are listed in
PORTS. LIB. Starting a list now will make things easier
later. I chose to put my disk buffers and storage locations
above the PROM so that they would be protected during
bank moves. When listing ports or memory locations, it
helps to show what happens when accessing these entries.
Note what bits contain information and how it is used.
Remember that these ports/memory locations must be the
same as those used in the monitor (the listings addresses are
the same as DDBIOS and not above the PROM as I had
suggested).

Step 2: Photocopy the listings needed for each port
function. Typically these are the CON IN/OUT routines that
are found in the manuals. Past experience has shown that it
is best to just steal the routines word for word from the
manuals. It is not unusual that the mention of timing
problems which require special software never find their
way to the books. So steal them all. Using the copies will be
faster than trying to find them again in one of the many
manuals, and also allows you to make lots of notes on the
listings.

Step 3: Create the monitor program. composed of the new
(stolen) 1/O routines, system initialization routines (also
stolen), disk functions (yes —stolen), and monitor functions
(try stealing them from SIG/M disk #26). My monitor
routines were originally from a CCS Z80 monitor that I
converted to 8080 nemonics. Using Wordstar to block delete
the old disk routines and add the new ones will speed up the
operation (if the monitor is for another system). It is
strongly recommended that you make small files of the
routines for block adds later as these can then be turned
into macros for CP/M 3.0.

Step 4: Assemble and burn the new monitor PROM. Test it
to see that all functions and routines work, as CP/M will be
calling these later. What you should have is a PROM at
FO000hex to F7TFFhex with a jump table at F000hex similar
to CP/M'’s BIOS entry table. This will make it easier to call
routines, especially if you later add or delete a byte or two
(the tables entry points become fixed at this time).

Step 5: Compile the new BIOS for CP/M 2.2. What will be
needed are the Disk Parameter tables, any routines not in
the monitor, or those that may change often. My BIOS has
several of the routines which are a simple call to the PROM
entry table, and a return out of it. About 600hex should be
more than adequate for this type of BIOS. The CP/M
systems or interface guide will list the needed routines. See
the sample BIOS for more insight.

Step 6: Assemble your new BIOS, correct errors found in
the assembly, and add it to a CPM60K.com file. This file is
generated by “MOVCPM 60K**” or SYSGEN and doing a
“SAVE 36 CPM60K.COM,” when prompted to write to ?
drive or reboot. This is covered in more detail in the
SYSGEN manual. Use DDT to add the BIOS at 1F80hex (I
like to fill 1F80 to 2500 with 00 so that dumping the memory
will show if the addition is correct or not). Use
“IBIOS.HEX,"cr,“R3580,”cr, then “D1F80,"cr to see if the

The Computer Journa 23

jump table is where it is supposed to be. The “R3580" is the
offset needed to load a hex file at 1F80 when it was intended
to go at EAOOhex.

Step 7: Save the file by “GO,” then "“SAVE 36
NEWCPM.COM,"cer. Use SYSGEN next and skip the “load
from drive?” by hitting the return key. Write the new
system to a spare disk, and then reset the system and try it.
If, like myself, you are upgrading, then this testing will
involve removing the old disk controller card, doing some
jumper changes, a PROM change, installing the new
controller, and then trying the new disk. If a second system
can be borrowed for this initial start up, a lot of frustration
can be saved. Do not be surprised if it does not work the
first or second time. There are normally a number of typos
that will need to be corrected first.

Step 8: After booting the system successfully, make lots of
backups and then test it fully in all modes and ways to check
for more errors. Assemble the format program and generate
new disks.

For installing the new BIOS without an existing system,
there are some alternatives. It is possible to generate a
running system from a monitor (assuming a complete CP/M
already existed for the system with only incorrect 1/O codes)
if the PROM can be programmed elsewhere. Some systems
have the PROM/monitor on the controller along with a serial
port, thus allowing them to be brought up initially from disk
(the Micromation Doubler is just such a controller). Most
companies have their PROMs and monitors set for their own
I/0. These will need to be changed for mixed systems. To
make these changes, a running monitor is needed that can
do memory changes, dumps, and disk reads/writes. It may
be necessary to buy such a PROM from a local dealer or
fellow club member, but the cost will be low in comparison
to buying all matching equipment. To change the I/O, just
read in the system with the disk read function, change the
1/0 port addresses {must be the same length or shorter, and
will have to be converted to machine language) and then
rewrite to a new disk. Change the disk and try booting the
system. Normally it will not work the first time, but keep
trying; it will work if you have stolen all the right code.

This multiple-step method of system generation should
get you up and running. Keep in mind that you will
encounter plenty of obstacles, but knowing that they will
appear and can be overcome should keep the frustration
level low. Hopefully I have shed some light on what is
needed.

Review
In this installment, I have provided some insight into the
SDSystems Versa Floppy Il controller, listed some things to
watch for, and reviewed CPM 2.2 system generation. In the
next article I will list the changes from 2.2 to 3.0 and help
you generate a new non-banked BIOS.
The listings for this article are found on pages 24 and 25.

24 The Computer Journal

MFEMORY MAP ANI PORT USAGFE TABLF

STANDARD PROM SDSystems CP/M 3.0
non=pror system based system barxed non=-banxed
*FFFF *FFFF *FFFF *FFFF *FFFF SFFFF

normal extendeo prom buffers SCB°s sCe’s
8105 blos monitor WAM=DRYS *FF00 buffers
*F400 *F200 *FROD *F800 *F800 *F800Q
8D0S BDOS 8108 monitnr monitor monitor
*E600 "E4CO *F200 *F000 *FOOO *FO0O
CCP cce BDOS BlOS resident BIOS
*0BF00 *plo0 *F4a00 *EADOQ BIOS *EAQO
TPA TPA cce ,BDOS *EAQO BDCS
*DCOO *DCcoo resident *C830
TPA cece BDOS TPA
D402 *E40D
TPA TPA
*C000 cooo
BNK BNK
] 1
bnhk TPA
BICS
and
BNOS
*0130 *0100 0130 “0100
CP/M CP/M cPrm CP/m
P90 P9 pgo P30
m=ceeces sgable TPA cemsceccmcanans
€k, &K Cak S6K 4K coy “ox

* note the TPA of a banxec CP/M 3.0 using standard BIOS (non=rom}
18 typacaily 40K.

R R R R R R R AR TR TR

PL=T TABLF
bANK GFFR :bank switch port or. 30 Fconarar
Disk controller ports
RSFT. gt Qa0n ;controller reset address
SFLFCT P! [l ;drive select port
STAT 5. L LY 3o} ratatis read port
TRACK : F.t onsr ;track port
SFCTCR. Fot LR ;sector port
DATA: F 0 :data \n/ost port
TMD: ¥ PEX s ;Commana write port
ROCHMT . Tir ;fead address comrana
ROCMI ¢ 0dar, :read sectur commany
WRCM{ CAZR !write sestor comrand
WRTCMC OF an iwil%e tracx corrani
Compatame CP!" ports
Eyi 022 ;timer $0
FSU o 029n itimer 41
ELl QIAr itimer 43
Fol' d2B- ;tirer control port
. .07 ol iparrailel in/cat port
TONTTA Fot 02Fr :seri1al data pore
CONC T ELY o eFn .ser1al control port
L - ;serisdl COn in wtatiy mask
. 0ln :seriai con oJt status ma
FOr the SDSysters "TBILI suppiie. 17 the
Tanlal twl area® wigl . It s
PoSauuestel frrat 31 0M cama gl T orraines as
1t will glve you tre cifferent filss aireacy

on F® giax wit® goC Imeatatl .

In THITYP: Crange to bei-ce <oge
LhA ENIT
ToA,040; IMALVE G RS
AN A,37ER CLFEs BIT 7
ITA L earT

Uncer the BOIT: heaz:inu remova the cnde
secrions €741, BTN, G0MIN:, arnc haLT:
maxe BT.: the beice coce
CALL INITHL
JNZ MUNITLOM 1GC TL MUNITIR
ISk FRRUR
e ISAMF OAZ LIZTFL
SIN MANTAL AN
INOW Is NFRT
IAFTF W BT,

BOOTLR: ..

R N N T L
SP/M OBASIC INPUT/OUTPUT URFRATIND SYSTVW {pl:)
This version bnots 17 single de-sity
cails ALB sin:le densi®y.

eyten eqiates and definisiors start firs*

STPROM: FQU

FOOo = 0F300M ;WOTATION CF SDPROM
003C = M5IZF: LEME] IMFMOUFY SIZF IN KBYTFC.
202F = CONDTA: FLU Zew INFEDED TC CLFAR AT 3,07
sdsyteT disk storage i1nformation
2042 = UNIT ECU a2n SUNIT BYTH FOw UISK SFLICT
These and other val.ies ir 'he 140 to 0f) nex
; range Toald be cranges to O0FlL4’nen ranue. Sowe
; aystems start thei: eguates with & Lase jairass
i #ng thern add to 1t for their Lyte ioCstions.
cpr egaaves
AQCO = ZBASF FoU (MS1C#-20)°1024
D4YC = CPup FIU CBASF1403M
DCOn = BOCE FIU CPmMBs 204H
EAQJD = BICS FQ!' CPMbelb0On
002C = CNUMBFR OF SFCT T Loal

NSFCTE QU a4
stere of 2.2 pios

continued

EADO
EAD3
EACS
EACY
EAQC
EAGF
EAL2
TALS
EALS
[2.98]
FALE
EA21
EA24
eA27
EAZA
EA2D
EAYO

EAJ)
TA)
EA3?
EAYB

EA4)
FA4?
fA4B
FALF

FAR]Y
EAR)
EASS
FASS
FAL?
EASR
EASA
FASC
EAST
FASE
FALD
A6
FAbLL
FAGLE
EATa

EATC

EATF
FAlO
EAS)
EARKH
FAES
EASC
EAPE
EAQ]
FAd4
FASY
EA9S

EA9B
FA?D
BAAD
EAAY
EAAG
EAAS
EAAC
EAAF

EABS

EARS
EAB®
TABA
EABC
EABD
EABF
EAC2
FAC)
EACS
FACS
FACS
EACA
EACSH
EACC
EACD

EACF
EADC

EAD)
EADS
EADO

—

ORC B1OS :STARY OFf 3108,
entry locations for bios
etandard 2.2 entry)jumpe

CIICFA JuP 3007 ;PROM COLD START LOADER.
CIDITA WBOOTE: IWMP WBOOT :TROM WARM BOOT.
21213} JMP CONST HECK CONSOLE XB STATUS.
ClovER JHMP CONIN EZAD CONSOLF CHARACTER.
C3l0DEB JMP CONOT SMRITE COMSOLE CHARACTER.
CISCED JINP LIST IHRITE LISTING CHAR.
CI62EB JHMP PUNCH WRITE PUNCHK CHAR,
cl63E8 JNP READER ZAD READER CHAR,
CICEEA JHMP HOMF] MOVE DISX TO TRACK BIZRC.
CIBGEA JmuP TDSKSL ELE2CY DISK DRIVE.
C3I1EFQ SETTRK: JMP SDPROM1ER SSEEEK TO TRACK 1IN REG A,
C321F0 STTSEC: JNP SDPROM+21H ;SET SECTOR WUMAPR.
Cl24F0 JMP SDPAOMe 24H ET DISK STARTING ADR.
ci27F0 JNP SDPROMe 27K EAD SELEZCTED BECTCA.
CI2AF0 JHP EDPROM+ 2ANM RITE SELECTED S$ECTOR,
Cl60EB JMP PRSTAT IST STATUS CHECK
CI64ED JMP SECTRAN ;SECTOR TRANSLATE MOUTINE
H oPy
i disk parameter headers for the diek drives
- DPBASE: EQU s :BASE OF DISK PARAMETER BLOCKS
62EAQ000 DPEO: Dw XLTo,0000H sTRANSLATE TABL?
00000000 ow 0000H,0000H ;SCRATCH ARFA
SCFEBSIEAQE oW DIRBUT,DPBO JDIR BUPF,PARM BLOCK
Dw CSVO,ALVO
62FA0000 DOPEY: ow ALTO,0000H ITRANSLATE TABLE
00000000 Ow 000QH,0000M 1SCRATCH AREA
SCFBYIEA Dw DINBUF,DPBO iDIR BUFF,PALM BLOCK
IANFCLBFC ow CSV1,ALV] :CHECK, ALLOC VECTCGRS
- DPBO: EQU s ;8D GISK PARM BLOCK
1a00 Dw 2% ;SEC PER TRACK
01 D8 3 :BLOCK SHIFT
97 ba 7 1 BLOCK MASK
00 0B 0 SEXTRT MASK
F200 oW 242 :DISK SIZE=]
3F00 Dw 6] ;DIAECTORY MAX
co bE 192 ;ALLOCO
00 DB ° ;ALLOCY
1900 Dw 18 ;CHFCK SIZE
0200 Dw 2 :QFPSET
- XLTO: £Q $ s TRANSLATE TABLE
01070012313 Dé 1,7,13,19,2%,%,11,17,2)
03090F1532 33 3,9,15,21,2,8,14,20,26
060C121304 Db 6,12,10,24,4,10,16,22
: BOOT
: Thie is the first entry entered from monitor
after reset and after system 18 loaded from
; systen tracx {(*x 0 and 1)
318000 BOOT: LX1 SP,30H :SET STACK POINTER.
H af 811 tnitlizetinn is not done in mornitor
H enter code here **eves
AF XRA A
320400 STA & :CTISK
3201300 STA 3 :JOBYTF
322A00 STA 42
CDIBEA CALL SETUP J3ET UP JUMPS.
DB2F I~ CONDTA {CLFAR CONSCLF 3TATUS,
211Cfhb LXx]l H,0MSC IPRINT OPENING MF33AGT.
CN1lFB CALL PMSG
1K0400 GOCPM: LDA 4 ;GFT DISK NUMBER TO
aF MOV C,A :PASS TO CCP IN (.
CI00D4 JMP CPMB (JUMP TO CCP.
SFT UP JUMPS TO CP/M
JEC] SETUP: MVI A,0C3H JPUT JMP TC wWBOOT
320000 STA 0 :ADR AT ZERO.
2103EA LXI H,WBOOTF
220100 SHLD 1
320500 STA &
2106DC LX1 H,BDOS JPUT JUMP TC BDOS
220800 SHLD 6 :AT ADR %,6,7.
2180002240 LX1 H,80M !SET DEFAULT OMA ADR,
SHLD 40n
ce RET SRETURN FROM SFTUP.
: The following storeges the 5D code for the drive
> AR the unit mOTY lOCBtiOn. A&LB are single density
: 4f{ more drives needed Change code here and sdd
; motre DPH e~ one per drive.
210000 TDSKSL: LXI K,0
kAl MmOV A,C
FFO2 cpPy 2 :FIND IF MORF THAN TWGO DISKS
Do /NC :SELFECTID IF SO RFTURN
E&FD ANl OTDH (REMOVE THEN CPM BITS
4200 $TA UNIT ;SET THE DISK UNIT MFMORY LOCAY
[} "oV L,C :WOM SET UP THE WL REGS FOR
2600 NVI N,0 :LOCATION OF THF PARAMFTERS
1133 LX1 N, OPBASE ;POR THE SELFCTED DRIVE
s DAD ®
29 DAD o
2 DAD ¥
2 DAD ¥
1e DAD D
co RET
HOMEF1
oroo L124 c,0
C3I1EEA Jmp SETTRAK
WARM-BOOT: RFAD ALL OF CPM BACK IN
TXCEPT B10S. THFN JUmMP TO CCP.
J18000 wWBOOT: LXx1 5P,80n ;SET STACK PCINTER.
ALY Y 2] LDA 42HM SAVF NlIsk l”nlrl;
J2ebFB STA TEMP

EADC 3EQO

EADE 324230
FAEl QEQQ

FAEY CTD1EFA
EAFS 3EZC

FAFB 324%00
EAEB 0FQ2

EAED CD21FA
EAFQ, 2100D4
EAF) 224000
FAFn CD20FO
FAF% 3A6GBEB
FAFC 324200
FAFF CDY9BFA
EBOZ CI94FA

EBOS CDO6FOCH

EBOS CDO3I¥FQ
EBOC C9

EBOC CDOCFO
EBLO C9¢

Ebll 7¢
£Bl2 87
EBl3 C8
EBl4 4F
EB1S CDCOEB
FB14 23
FBL? CI11Fb

MVYIoOALQ ;0 for singie and 40 for

STA 424 :DOUBLF

My 1 c,0

CALL SETTRK

MVI A ,NSECTS SGET & SECTURS FUK CPM RFAN.
STA 4%H

MVI C,2

CALL SETSEC
LXI H,CPMB

SGET STARTING ADDRESS,
SHLD 40K N

CALL SDPROM+ 20K
LDA TEMP
STA 42H

CALL SETUP
JMP SOCPM

SSET 1P JUMPS.
;GO BACK TL CPM,

; CHEINK JUNSOLE INPUT STATUS.

CONST: TALL SDPRCM+06H JREAD CONSULF STAT's,
RET {RFTRN FROM CONST.
: READ A CHARACTER FROM CONSOLE.

TONIN: CALL SDPROM+03H
T

RE

; WRITE A CHARACTER TO THF CONSCLF DFVICF.

CGONOT: CaLL
RET

SDPRCM+ OCH

: PRINT THE MFS35AGF AT Hal UNTIL A ZFRC.

PM5G: MOV A,M

JGFT A CHARACTFR.
ORA A (1F IT°S IFR0,
RZ SRETURN,
MOV CiA JOTHFRWISE,
CALL TONCT JPRINT IT.
INX H T INCREMENT H&L,

JMP PMSG JAND GET ANOTHFR.

: CBLOS MES5AGES

EBIC 0DCA43IS02FOMSG: DB 0DH,0Ah, CP/M 2.2 SD SYSTEMS=-K{BLFR

EB3A J0DORINZ2R] 0B GDH,0kH, "8"5D A&B ~

EB4S 0LOAIA30 DB ODK,JAH, MSIZE/10+70°,MSIZF MOD 10 + "0~
K V1.0 of 2/01/84 ",0

EB49 4B2056312F 0B

: WRITE A CHARACTER ON LIST DEVICE.
; INSERT YOUR ROUTINF HFRF

FESC CD12FO LIST: CALL SDPROM+12H
EBSF C9 RET
EB6QO AF PRSTAT XRA A
FB6L C9 RET JRETURN ALWAYS NOT READY
; PUNCH PAPER TAPE.
PUNCH :
£B62 C9 RET ;RETURN FROM PUNCH.
NORMALLY "SED TC READ PAPER TAPE,
READER:
EB63 C9 RET ;RETURN FROM READER.
;3ECTOR TRANSLATION ROUTINE FOLLOWS
EB64 EB SECTRAN XCHG
EB6S 096F DAD B
MOV L, M
FB&T 2600 MVI H,Q
EB69 C9 RET
EBAA TEMP: DS 1
: DISK DATA STORAGE AREA DONOT CHANGE
FB4L = BEGDAT EGU s
Fb6B DIRBUF: DS 129 :DIRECTORY ACCESS BUFFER
EBEB ALVO: DS ERY
ECDA CSVvo: DS 16
EC1A ALV1: DS 31
EC39 CSsvl: D5 16
EC49 = ENDDAT EQU s
00DD = DATSIZ EQU $=BEGDAT
ECAY END
BOOT LOADER
Ithis 18 & guicx bootstrap that loads at track 0
;sector 1 it will be put into memory at 0000 by the
:Sdprom bootstrap disx read then it will be
iexecuted and read in the rest of the first two tracks
203C = MSIZE QY 60
FOQO = SDPROM FQU OFo00H
EADD = BlOS £o34) SAOQH* {MSIZF=24)*1024
0000 313000 LxI SP,80H
0003 210200 Lxr H, 28 ;SET TO 2ND SECTOR
Q006 224309 SHLD 43 :SECTOR TO RFAD
0009 2100D4 Lxl H,BICS=1600H ;START OF CPM’S CCP
000C 224000 SHLD 40K :DMA LOCATION
Q00F JIE3] MV A,S1
0011 324%00 STA 4esSh sMUMER OF SECTORS TO READ
0014 CD2DFO CALL SDPROM* 2DH :READ MULTIPLF SECTORS
0017 CIO0EA JHP B10OS

001A

£ND ..

The Computer Journai 25

ROALAB "Automates Lab Instruments

H P regas .
: B ik

RS [}

%3 L

S

e Interactive Microware's general-purpose ADALAB ™ data ac-
quisition and control system interfaces with virtually any lab in-
strument using a recorder or meter. including GC and HPLC sys-
tems, spectrophotometers, pH meters, process control apparatus.
thermocouples, etc.

e Lab Data Manager™ software facilitates single or mutti-
channel acquisition, storage. display and chart recorder style out-
put of lab instrument data. IMi QUICKI/O software operates within
easy-to-use BASIC!

e Thousands of scientists currently use IMI software and or
ADALAB products worldwide!

Price includes 48K APPLE i1+ CPU, disk drive with controller,
12" monitor, dot matrix printer with interface, IM{ ADALAB ™ inter-
face card. *Tragemarx o Appie Compuer ri

IMI's ADALAB INTERFACE

CARD IS AVAILABLE
SEPARATELY FOR ONLY $495

{includes 12-bnt A D 12-bit D A 8 digntal sense inputs 8
digital control outputs. 32-bit real-time ctock. two 16-bit
timers plus QUICKI O data acquisition software)

INTERACTIVE MICROWARE, INC.
' | P.O. Box 771, Dept. 226
w State College, PA 16801 (814) 238-8294

Editor's Page, continued from page 1

class bulk mailing.

It is obvious from looking at these programs that
they were designed by a programmer who had no
idea of what goes on in the real world. There
probably are some useful programs available, but the
ones we looked at did not fit our needs at all
Fortunately Ernie Brooner, who is writing our multi-
user column, offered a data base which he wrote for
his own use. It is not exactly what we need, but Ernie
said “That's simple —I wrote it, so I'll just change a
few lines.”

The difference between a program written by a
user and one written by a programmer who does not
actually use the software himself is obvious to anyone
who tries to use the program in a day-to-day basis.

It is time for the software industry to get out in
the field and spend some time with their customers to
learn what it is that people really do with computer
software.]

26 The Computer Journa

The Bookshelf

TTL Cookbook

Popular Sams author Dan Lancaster gives you a complete look at TTL logic circuits, the
most inexpensive, most widely applicable form of electronic logic. In no-nonsense
language, he spells out just what TTL is, how it works, and how you can use it. Many
practical TTL applications including digital counters, electronic
stopwatches, digital voitmeters, and digital tachometers. By Don Lancaster. 336 pages,
SUexB8Yr soft. T18T4. ..o $11.95

are examined,

SCRs and Related Thyristor Devices

A comprehensive guidebook to the operational theory and practical applications for
silicon controlled rectifiers, triacs, diacs, unijunction transistors, and other members of the
thyristor family. Also contains a microprocessor mini-course to help you in interfacing
thyristors with digital contro) circuits. If you're involved with design. installation. or
maintenance of electronic power-control equipment, this is the book for you. By Clay

Laster. 136 pages, 8Yax11%, soft. ©1981....o i $12.95
Instrumentation: Transducers, Experimentation, and
Applications

A laboratory-oriented manual that helps provide you with an in-depth understanding of
instrumentation and measurement. By Roger W. Prewitt and Stephen W. Fardo. 224
pages. Bhax1l, soft. € 1979, e $12.95

The Programmer's CP/M Handbook
An exhaustive coverage of CP/M-80% | its internal structure and major components is
presented. Written for the programmer, this volume includes subroutine examples for
each of the CP/M system calls and information on how to customize CP'M — complete with
detailed source codes for all examples. A dozen utility programs are shown with heavily
annotated C-language source codes. An invaluable and comprehensive tool for the serious

programmer. By Andy Johnson-Laird, 750 pages, 7'1x9%, softbound. $21.95

Interfacing to S-100 (IEEE 696} Microcomputers

This book is a must if you want to design & custom interface between an S-100
microcomputer and almost any type of peripheral device. Mechanical and electrical design
is covered, along with logical and electrical relationships, bus interconnections and more.
By Sol Libes and Mark Garetz, 322 pages. 812x9%, softbound. $16.95

Microprocessors for Measurement and Control

You'll learn to design mechanical and process equipment using microprocessor-based
“real time” computer systems. This book presents plans for prototype systems which
allow even those unfamiliar with machine or assembiy language to initiate projects. By
D.M. Auslander and P. Sagues, 310 pages, 7 3/8x9 1/4, softbound. $15.99

Osborne CP/M® Usger Guide (Second Edition)

A new revised edition which includes expanded sections on CP/M® 86 and CP/M* 80, as
well as CP/M® ’s relationship to bly language progr MPM? and CP/NET®
operating environments. By Thom Hogan. 282 pages. 6'4x9'%, softbound.......... $15.95.

Discover FORTH

Whether you are a beginner seeking information on this muiti-faceted programming
language or a serious programmer already using FORTH, this book is a reference that
should not be overlooked. Long considered s computer language of building blocks.
FORTH has been optimized for speed and requires little computer support. By Thom
Hogan. 146 pages. 6l x8%, softbound. $16.95

68000 Assembly Language Programming

Each of the 88000’y instructions is individually presented and fully explsined in this
assembly language tutorial. For experienced programmers. this book is also a complete
reference to the 88000 instruction set and programming techniques. By Lance A
Leventhal, 614 pages. 8'1x8%, softbound. $18.95

Z28000° Assembly Language Programming

This book is filled with real-world programming exampies. sample problems. and
troubleshooting hints that will guide the reader to mastery of this powerf{ul new 16-bit
“super chip”. The entire Z8000® instruction set is described in detail. By Lance A
Leventhal, Adam Osborne, and Chuck Collins. 928 pages. 8'2x9'. softbound. $19.99

The 8086 Book

Anyone using. designing, or simply interested in an B086-based system wiil be delighted
by this book's scope and authority. As the 18-bit microprocessor gains wider inciusion in
smaii computers, this book becomes invaluable as a reference tool which covers the
timing, architecture and design of the 8086, as weil as optimal programming techniques.
interfacing, special features, and more. By Russell Rector and George Alexy, 824 pages,
B8lax8% . softbound. $16.99.

280° Assembly Language Programming

Programming examples illustrate software development concepts and actual assembiy
language usage. More than 80 sample programming problems with solutions and a
complete Z80% instruction set reference table. By Lance A. Leventhal. 840 pages,
B8hrx9%, softbound. L. . ..$18.95.

8080A/8085 Assembly Language Programming

More quality programming examples and instruction sets than can be found in any
other book on the subject. Information on assemblers. program loops. code conversion and
more. A must for 8080A ‘80805 programmers. By Lance A Leventhal. 448 pages. 6'1x9%,
softhound. e $18.95

Microprocessor Circuits, Volume 2: /O Interfacing &
Programmable Controllers

Idea! way to learn about comercial and industrial applications of microprocessor
circuitry and gain practical. valuable, hands-on experience at the same time. Features
many easy-to-build demonstration circuits that teach you about advanced microprocessors.
microcontrollers. and real-worid l/O interfacing. Perfect for technicians. hams. students.
and teachers. By Edward M. Noll. 128 pages. 8'ax1l. softbound. $9.95

IC Timer Cookbook {2nd edition)

Learn more ways to use the IC timer in this big Second Edition of Sam’s best-seller. It's
easy to use, practical, and includes many new devices with ready to-use applications 1n
circuits that really work! All circuits and relationships are fully defined and discussed for
clarity. You'll know & lot more about s lot more ICy after you've finished this one By
Walter G. Jung, 384 pages. 5'2x8'1. softbound. $17.95

Microprocessor-Based Robotics

Introduces you to roboties —a dynamic new field of science that uses your computing
and electronic talents as well as your mechanical and electrics] knowledge. First, you'll
learn the mechanics of robot hands, arms. and legs; then. tactile sensing. motion and
attitude sensing. and systems. After that. you controlling with
microprocessors and BASIC programs. and finally. you learn to control the entire robot
system with voice commands' Fascinating and not machine specific. By Mark J. Robiilard.
224 pages dtaxll i softbound. $16.95

vision learn

TV Typewritter Cookbook

Shows you how to quickly and easily project words and pictures from a common.
microprocessor-based system onto an ordinary TV set. You'll be introduced to TVT
communications by best-setling suthor Doo Lancaster. who discusses basic TVT system
design. memory types, interface circuitry, hard-copy output. and color graphics. By Don
Lancaster, 258 pages. 54x8%1. softbound. ... $11.95

Microcomputer Math

A step-by-step introduction Lo binary. octal. and hexidecimal numbers. and srithmetic

operations on sll types of microcomputers. Excellent for serious BASIC beginners as well
a5 assembly language programmers. Treats addition and subtraction of binary. multiple-
precision and floating-point operations, fractions and scaling. flag bits, and more. Many
practical examples and seif tests. By William Barden, 160 pages, 5 :x8":, softbound$11.95

Understanding Digital Logic Circuits

A working handbook for service technicians and others who need to know more about
digital electronics in radio. television, audio, or related areas of electronic troubleshooting
and repair. You're given an overview of the anatomy of digitallogic diagrams and
introduced to the many commercisl IC packages on the market. By Robert G. Middleton,
392 pages, 5'2x8'n.softbound. ... $18.95.

CMOS Cookbook

One of the best-selling technical books on the market, this cookbook gives you a solid
understanding of CMOS technology and its application to real-world circuitry. Explains
how CMOS differs from other MOS designs, kow it's powered, and what its advantages
are over other constructions. The final chapter shows you how to put all preceding
information to work constructing severa! large-scale. working instruments. Includes a
m.ni-catalog of more than 100 devices. with pinouts and applicatior notes. By Don
Lancaster, 418 pages, 5'1x8'7, softbound. L

SCRs and Related Thyristor Devices

A comprehensive guidebook to the operational theory and practical applications for
silicon controlled rectifiers. triacs, dises, unijunction transistors. and other members of the
thyristor family. Also contains s microprocessor mini-course to help you in interfacing
thyristors with digital control circuits. If you're involved with design. instaliation. or
maintenance of electronic power-control equipment. this 1s the book for you. By Clay
Laster. 136 pages, 8'ax11. softbound.$12.95

Real Time Programming: Neglected Topics

This book presents an original approach to the terms. skills, and standard hardware
devices needed to connect a8 computer to numerous peripheral devices. It distills technical
knowledge used by hobbyists and computer scientists alike to useable, comprehensible
methods. It explains such computer and electronics concepts as simple and hierarchical
interrupts, ports, PIAs. timers, converters, the sampling theorem. digital filters, closed
loop control systems, multiplexing, buses, communication, and distributed computer
systems. By Caxton C. Foster, 190 pages, 6'4x8%, softbound. $9.95

Interfacing Microcomputers to the Real World

Here is a complete guide for using a microcomputer to computerize the home. office. or
laboratory. It shows how to design and build the interfaces necessary to connect &
microcomputer to real-worid devices. With this book. microcomputers can be programmed
to provide fast, accurate monitoring and control of virtually ali electronic functions— from
controlling houselights, thermostats, sensors. and switches, to operating motors,
keyboards. and displays. This book is based on both the hardware and software principles
of the Z80 microprocessor (found in several minicomputers, Tandy Corporation's famous
TRS-80, and others). By Murray Sargent 1] and Richard Shoemaker, 288 pages. 6'ax9%.
softhound. e $15.55

IC Timer Cookbook

Gives you a look at the hundreds of ways IC timers are used in electronics. Provides a
collection of numerous recipes for using the IC timer, including a 555 monostable circuit
with suxilisry output. & touch switeh, a programmable monostable cireuit.and hundreds of
others. By Waliter G. Jung. 288 pages, 5'ax8%,30ft. ©1977....................... $10.95

Tre Computer Journa: 27

CP/M Primer

Helps microcomputer veterans and novices alike find the answers about CPM in a
complete, onestop sourcebook that's 3 Sams bestselier! Gives you complete CPM
terminology. hardware and software concepts. startup details. and more for this popuiar
B0B0/B0B5/Z-80 operating system. Heips you begin using snd working with CP'M
immediately, and includes a list of compatible software, too By Stephen Murtha and
Mitchell Waite. 96 pages. 8'»x11, comb. < 1980....... $14.35

Soul of CP/M: Using and Modifying CP/M's Internal
Features

Teaches you how to modify BIOS, use CP/M system calls in your own programs. and
more! Excellent for those who have read CP/M Pmmer or who otherwise understand
CP/M's outer-layer utilities. By Mitchell Waite. Approximately 160pages, 829 :. comb
T $14.95

The S-100 and Other Micro Buses (2nd Edition)

Examines microcomputer bus syestems in general and 21 of the most popular systems
in particular. including the S-100. Heips you expand your computer system through a
better understanding of what each bus includes and how vou car interface one bus with
another. By Eimer C. Poe and James C. Goodwin, II. 208 pages. 5'+x#7:. soft. 198139 95

Interfacing & Scientific Data Communications
Experiments

This book introduces you to the principles involved in transferring data using the
asynchronous serial data-transfer technique. It focuses orn using the umverssi
asynchronous receiveritransmitter (CART! chip in order to help your understanding of
communication chips. Explores operation of teletype-writer interfaces and serial
transmission circuits. With experiments and circuit details. By Peter R. Rony 160 pages
Stax8%r. soft. TI9T9. 8795

Active-Filter Cookbook

A practical discussion of the many activefilter types and uses, written by one of Sams
most popular suthors. Teaches you how to construct filters of all types. including high
pass, low-pass. and bandpass having Bessel, Chebyshev. or Butterworth response. Easy to
understand — no advanced math or obscure theory. Can aiso be used as a reference book
for analysis and synthesis techniques for activefilter specialists. By Don Lancaster. 240
pages, SiaxBla, soft. 1975, 81495

IC Converter Cookbook
Discusses and explains data conversion fundamentals, hardware, and peripherals A
valuable guide to help you understand and use d/a and a/d converter applications. Includes

manufacturers’ data sheets. By Walter G. Jung. 576 pages, 5'2x8Y1, soft. 1978... $1495

IC Op-Amp Cookbook

An informal, easy-to-read guide covering basic op-amp theory in detail, with 200
practical. illustrated circuit applications to reflect the most recent technology. JFET and
MOSFET units are shown in both single and multiple formats. Inciudes manufacturers
data sheets. and lists addresses of the companies whose products are festured. By Waiter
G Jung. 480 pages, 5'1x8'2.80ft. ©1980.ol $15.95

Regulated Power Supplies (3rd Edition)

Newest, most comprehensive discussion you'll find of regulated power aupplies,
including their internal architecture and operation. Thoroughly explains how to use
regulation in your designs and projects when the need arises. and discusses practical
circuitry and components. A valuable book for any techaician or engineer involved in
servicing or design. By Irving M. Gottlieb. 424 pages, 5'4x8'2, soft. ©1981. $19.95

o S S

at Title Price Total

The Computer Journal y
PO Box 1697 Kalispell, MT 59903
Order Date:
Print Name
Address
City State Zip I -

: Shipping charges are: $1.00 for the first Book Total

~
D Check [IMastercard CVisa book. and $.50 for ali subsequent books.
Card No. Expires Please alow 4 weeks for delivery. Shipping
TOTAL

Signature for Charge__

28 The Computer Journal

New Products

SYBEX Releases “Mastering CP/M.”

Mastering CP/M, an advanced guide to using, aitering,
and adding features to the CP/M microcomputer operating
system, has just been released by SYBEX. CP/M users and
systems programmers will better understand the
organization and operation of CP/M with this book. The
BIOS (Basic Input/Output System) and the BDOS (Basic Disk
Operating System), are described in detail, illuminating for
the reader the subtleties of the useful CP/M system. Macros
instructions, powerful tools that enable programmers to
design more efficient assembly language programs, are
introduced, and a valuable library of macros is developed.

This well-written and fascinating book takes the reader on
a step-by-step journey of discovery, leading to a more
thorough understanding of the organization and operation of
CP/M. An important set of appendices is included, making
this a comprehensive reference for CP/M users and
programmers. The book is priced at $17.95. Add $1.50 for
postage when ordering directly from SYBEX, 2344 Sixth
Street, Berkeley, CA, 94710.]

Free Thermistor Catalog

Thermometrics, Inc. of Edison, New Jersey announces the
publication of it's 52 page Thermistor Catalog number 181-
D. The new catalog will prove to be of great value to anyone
who has to design, specify or use thermistors and thermistor
networks. Some of the useful features are as follows.
¢ A four page foldout “Thermistor Selection Guide” which
provides comparison of all the styles and sizes of
thermistors at Thermometrics, and includes physical,
thermal and electrical properties for each type.

* A review of the extensive calibration and test facilities
and services available at Thermometrics.

¢ A technical applications and data section which includes
definitions of thermistor terminology, the various equations
which describe the thermistor R-vs-T characteristics, a
discussion of curve tolerances and two design examples on
linearized voltage and resistance networks including output
“S” curves for different material systems.

e A product section for each of the standard thermistor
types available detailing all dimensions, R-vs-T
characteristics, thermal properties, options and ordering
information.

In addition to the new catalog there are some very useful
application notes available which deal with thermistor
theory, measurement, design techniques, stability and
theory of self heated thermistors (including their use in flow
measurement.) This information is available free of charge
to interested readers from Thermometrics, 808 US Highway
1, Edison, New Jersey, 08817, Tel. 201-287-2870. [|

FORTH Tutorial at Half Price

MicroMotion announces the availability of the FORTH-79
Tutorial & Reference Manual at half price ($10.00). This
professionally written manual was the first complete
FORTH tutorial to teach the FORTH computer language,
including FORTH-79 and FIG-FORTH. It has been replaced
with their new publication, FORTH Tools ($20.00), which
teaches the new 1983 International Standard. For further
information contact MicroMotion, 12077 Wilshire Blvd. #5086,
Los Angeles, CA, 90025, Tel. 213-821-4340. []

Interface Breadboard Package from Group
Technology

The Color Computer Expansion Connector Breadboard,
Model CC-100, for the TRS-80 Color Computer 1 or 2 makes
it possible to connect external devices to the expansion
connector signals of the computer. Combined with a
solderless breadboard and the book TRS-80 Color Computer
Interfacing, With Experiments (book no. 21893), it forms the
CoCo-100 package providing basic interfacing instructions
for any version of this versatile computer. In addition, the
CC-100 Experiment Component Package contains the parts
necessary to do the experiments in the book.

With the CoCo-100, the user can learn in step-by step
fashion how to access the signals available in the parallel
expansion connector of the TRS-80 Color Computer and how
to construct and use a peripheral interface adapter (PIA).
The experiments demonstrate how to enter and retrieve
binary data and how analog-to-digital and digital-to-analog
conversion is performed both within the computer and using
external devices. With the fundamental understanding and
hands-on experience developed through the interface
package, users are well-equiped to extend their interfacing
capabilities to a variety of applications.

Readers and reviewers alike have praised Andy
Staugaard’'s book for its clarity and thoroughness. The
aspiring experimenter needs only a working knowledge of
Color BASIC programming and the binary number system
{reviewed in the Appendix) to embark on a delightful
journey toward proficiency in interfacing. The reader is
shown how to construct input/output (I/O) ports and to use
them to connect the computer to the mostly analog world
that lies outside.

Model CoCo-100, Interface Breadboard Package, is priced
at $51.25, a 10% reduction from the cost of the individual
components, plus $2.50 shipping. Virginia residents add 4%
sales tax. VISA and Master Cards accepted. For purchase or
further information, contact Group Technology, Ltd., PO
Box 87, Check,VA, 24072, Tel. 703-651-3153. n

